Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implantable Cuff with Electrodes

09.05.2014

Freiburg researchers develop new method for lowering high blood pressure without side effects

High blood pressure is the greatest health risk worldwide behind smoking and alcohol consumption. In Germany, around 25 percent of the population suffers from arterial hypertension, as the condition is referred to in medical circles. The microsystems engineers Dr. Dennis Plachta and Prof. Dr. Thomas Stieglitz from the Laboratory of Biomedical Microtechnology at the Department of Microsystems Engineering (IMTEK) of the University of Freiburg teamed up with the neurosurgeons Dr. Mortimer Gierthmühlen and Prof. Dr. Josef Zentner from the Medical Center – University of Freiburg to develop a new cuff equipped with electrodes that can lower blood pressure without causing side effects.


The cuff is equipped with electrodes that can lower blood pressure without causing side effects. Source: IMTEK

Doctors usually prescribe drugs against high blood pressure. In around 35 percent of patients, however, pills do not succeed in reducing blood pressure in the long term. Chronic high blood pressure leads to damage in other organs – the eyes, kidneys, the heart, and the central nervous system, in particular. In order to help patients whose blood pressure cannot be reduced by means of drugs, the Freiburg researchers propose implanting a newly developed cuff with 24 electrodes in the so-called vagal nerve on the neck. The device starts by determining which electrode is closest to the nerve fibers that transmit the blood pressure signal. Then it uses electrostimulation to overwrite the information in these fibers with such precision that other bundles of fibers with other functions are not affected. The researchers have named this procedure for individual analysis, selection, and stimulation “BaroLoopTM.”

The scientists tested the device on rats and succeeded in lowering their mean blood pressure by 30 percent, without causing side effects such as a reduced heart rate or a drastic decrease in respiratory rate. The findings of the study have been published in the Journal of Neural Engineering.

The idea for the research project originated in 2004 within the context of the establishment of the Peter Osypka Endowed Chair in Neuroelectronic Systems at the Department of Neurosurgery. Now that the scientists have determined that a cuff with electrodes is feasible in principle, they have begun to develop a completely implantable system. As such a device is classed as an active implant that must fulfill the highest level of safety standards according to medical product laws, they do not expect to produce a licensed product for at least ten years.

Original publication:
“Blood pressure control with selective vagal nerve stimulation and minimal side effects” (D T T Plachta et al. 2014 Journal of Neural Engineering 11 036011).

Melanie Hübner | Albert-Ludwigs-Universität Freiburg
Further information:
http://www.pr.uni-freiburg.de/pm/2014/pm.2014-05-09.37-en?set_language=en

Further reports about: Biomedical Engineering Implantable Laboratory Microtechnology blood drugs effects electrodes fibers pressure

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>