Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implantable Cuff with Electrodes

09.05.2014

Freiburg researchers develop new method for lowering high blood pressure without side effects

High blood pressure is the greatest health risk worldwide behind smoking and alcohol consumption. In Germany, around 25 percent of the population suffers from arterial hypertension, as the condition is referred to in medical circles. The microsystems engineers Dr. Dennis Plachta and Prof. Dr. Thomas Stieglitz from the Laboratory of Biomedical Microtechnology at the Department of Microsystems Engineering (IMTEK) of the University of Freiburg teamed up with the neurosurgeons Dr. Mortimer Gierthmühlen and Prof. Dr. Josef Zentner from the Medical Center – University of Freiburg to develop a new cuff equipped with electrodes that can lower blood pressure without causing side effects.


The cuff is equipped with electrodes that can lower blood pressure without causing side effects. Source: IMTEK

Doctors usually prescribe drugs against high blood pressure. In around 35 percent of patients, however, pills do not succeed in reducing blood pressure in the long term. Chronic high blood pressure leads to damage in other organs – the eyes, kidneys, the heart, and the central nervous system, in particular. In order to help patients whose blood pressure cannot be reduced by means of drugs, the Freiburg researchers propose implanting a newly developed cuff with 24 electrodes in the so-called vagal nerve on the neck. The device starts by determining which electrode is closest to the nerve fibers that transmit the blood pressure signal. Then it uses electrostimulation to overwrite the information in these fibers with such precision that other bundles of fibers with other functions are not affected. The researchers have named this procedure for individual analysis, selection, and stimulation “BaroLoopTM.”

The scientists tested the device on rats and succeeded in lowering their mean blood pressure by 30 percent, without causing side effects such as a reduced heart rate or a drastic decrease in respiratory rate. The findings of the study have been published in the Journal of Neural Engineering.

The idea for the research project originated in 2004 within the context of the establishment of the Peter Osypka Endowed Chair in Neuroelectronic Systems at the Department of Neurosurgery. Now that the scientists have determined that a cuff with electrodes is feasible in principle, they have begun to develop a completely implantable system. As such a device is classed as an active implant that must fulfill the highest level of safety standards according to medical product laws, they do not expect to produce a licensed product for at least ten years.

Original publication:
“Blood pressure control with selective vagal nerve stimulation and minimal side effects” (D T T Plachta et al. 2014 Journal of Neural Engineering 11 036011).

Melanie Hübner | Albert-Ludwigs-Universität Freiburg
Further information:
http://www.pr.uni-freiburg.de/pm/2014/pm.2014-05-09.37-en?set_language=en

Further reports about: Biomedical Engineering Implantable Laboratory Microtechnology blood drugs effects electrodes fibers pressure

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>