Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique visualizes cancer during surgery

19.09.2011
Scientists from Technische Universitaet Muenchen, Helmholtz Zentrum Muenchen and University of Groningen have now deployed a new imaging technology using laser light to detect cancer based on molecular signatures, leading to the localization of even small cancer cell nests that surgeons might otherwise overlook during surgery.

The technique has now been successfully tested on nine patients diagnosed with ovarian cancer. There are plans to apply this imaging concept also to minimally invasive and endoscopic procedures.

Ovarian cancer is one of the most frequent forms of cancer that affect women. As tumors can initially grow unchecked in the abdomen without causing any major symptoms, patients are usually diagnosed at an advanced stage and have to undergo surgery plus chemotherapy. During the operation, surgeons attempt to remove all tumor deposits as this leads to improved patient prognosis. To do this, however, they primarily have to rely on visual inspection and palpation – an enormous challenge especially in the case of small tumor nests or remaining tumor borders after the primary tumor excision.

Yet surgeons could now be getting support from a new multispectral fluorescence imaging system developed by a team of researchers in Munich, headed by Vasilis Ntziachristos, Professor of Biological Imaging. A study carried out on nine patients with ovarian cancer has shown that the new system can be used to localize cancer cells during surgery. Before the operation, the patients were injected with folic acid chemically coupled to a green fluorescent dye. Most ovarian tumors have a protein molecule on their surface that bonds with folic acid and transports it inside the cell. This protein is known as the folate receptor alpha. During abdominal surgery, the surgeon can then shine a special laser light onto the patient’s ovaries, causing the green-labeled folic acid inside the cancer cells to emit light. Healthy tissue remains dark.

The fluorescent cancer cells, however, cannot be detected by the naked eye. Three cameras, mounted on a pivoting support arm over the operating table, detect optical and fluorescent signals at multiple spectral bands and then correct for light variations due to illumination and tissue discolorations in order to provide truly accurate fluorescence images that can be simultaneously displayed with corresponding color images on monitors in the operating room. The surgeon can thus check whether all the cancer cells have been removed by inspecting for remnant fluorescence light. In eight of the nine patients, doctors were able to remove small clusters of tumor cells that might otherwise have gone undetected. The multispectral fluorescence imaging system has thus passed its first OR test. However, it will have to prove its value to improve clinical outcome in further operations before it can be deployed for routine surgical procedures.

The researchers in Munich and Groningen also want to further develop the camera system so it can be used to detect other forms of tumors during operations. Of significant importance in future developments is the ability to offer accurate fluorescence imaging so that data collected reflect true presence of disease. “The use of advanced, real-time optical technology will allow us to standardize data collection and accuracy so that studies performed at multiple clinical centers can be accurately compared and analyzed” explains Prof. Vasilis Ntziachristos. This is important for the clinical acceptance of the technology and its approval by regulatory agencies. In the future patient selection through personalized medicine approaches, for example by obtaining a molecular profile of the tumor of each patient, would further enable custom-tailored surgical treatment of improved accuracy. The team is also planning to build a version for minimally invasive operations.

Acknowledgment: The folic acid chemically coupled to a green fluorescent dye was provided by Phil Low of Purdue University.

Publication:
Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results

Goolitzen M van Dam et al., Nature Medicine, Sept 2011, DOI: 10.1038/nm.2472

Contact:
Prof. Vasilis Ntziachristos
Institute for Biological Imaging
Technische Universität München / Helmholtz Zentrum München
Tel. +49 89 3187 4139
E-mail: v.ntziachristos[at]tum.de

Dr. Ulrich Marsch | idw
Further information:
http://www.tum.de

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>