Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique visualizes cancer during surgery

19.09.2011
Scientists from Technische Universitaet Muenchen, Helmholtz Zentrum Muenchen and University of Groningen have now deployed a new imaging technology using laser light to detect cancer based on molecular signatures, leading to the localization of even small cancer cell nests that surgeons might otherwise overlook during surgery.

The technique has now been successfully tested on nine patients diagnosed with ovarian cancer. There are plans to apply this imaging concept also to minimally invasive and endoscopic procedures.

Ovarian cancer is one of the most frequent forms of cancer that affect women. As tumors can initially grow unchecked in the abdomen without causing any major symptoms, patients are usually diagnosed at an advanced stage and have to undergo surgery plus chemotherapy. During the operation, surgeons attempt to remove all tumor deposits as this leads to improved patient prognosis. To do this, however, they primarily have to rely on visual inspection and palpation – an enormous challenge especially in the case of small tumor nests or remaining tumor borders after the primary tumor excision.

Yet surgeons could now be getting support from a new multispectral fluorescence imaging system developed by a team of researchers in Munich, headed by Vasilis Ntziachristos, Professor of Biological Imaging. A study carried out on nine patients with ovarian cancer has shown that the new system can be used to localize cancer cells during surgery. Before the operation, the patients were injected with folic acid chemically coupled to a green fluorescent dye. Most ovarian tumors have a protein molecule on their surface that bonds with folic acid and transports it inside the cell. This protein is known as the folate receptor alpha. During abdominal surgery, the surgeon can then shine a special laser light onto the patient’s ovaries, causing the green-labeled folic acid inside the cancer cells to emit light. Healthy tissue remains dark.

The fluorescent cancer cells, however, cannot be detected by the naked eye. Three cameras, mounted on a pivoting support arm over the operating table, detect optical and fluorescent signals at multiple spectral bands and then correct for light variations due to illumination and tissue discolorations in order to provide truly accurate fluorescence images that can be simultaneously displayed with corresponding color images on monitors in the operating room. The surgeon can thus check whether all the cancer cells have been removed by inspecting for remnant fluorescence light. In eight of the nine patients, doctors were able to remove small clusters of tumor cells that might otherwise have gone undetected. The multispectral fluorescence imaging system has thus passed its first OR test. However, it will have to prove its value to improve clinical outcome in further operations before it can be deployed for routine surgical procedures.

The researchers in Munich and Groningen also want to further develop the camera system so it can be used to detect other forms of tumors during operations. Of significant importance in future developments is the ability to offer accurate fluorescence imaging so that data collected reflect true presence of disease. “The use of advanced, real-time optical technology will allow us to standardize data collection and accuracy so that studies performed at multiple clinical centers can be accurately compared and analyzed” explains Prof. Vasilis Ntziachristos. This is important for the clinical acceptance of the technology and its approval by regulatory agencies. In the future patient selection through personalized medicine approaches, for example by obtaining a molecular profile of the tumor of each patient, would further enable custom-tailored surgical treatment of improved accuracy. The team is also planning to build a version for minimally invasive operations.

Acknowledgment: The folic acid chemically coupled to a green fluorescent dye was provided by Phil Low of Purdue University.

Publication:
Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results

Goolitzen M van Dam et al., Nature Medicine, Sept 2011, DOI: 10.1038/nm.2472

Contact:
Prof. Vasilis Ntziachristos
Institute for Biological Imaging
Technische Universität München / Helmholtz Zentrum München
Tel. +49 89 3187 4139
E-mail: v.ntziachristos[at]tum.de

Dr. Ulrich Marsch | idw
Further information:
http://www.tum.de

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

Researchers make flexible glass for tiny medical devices

24.03.2017 | Materials Sciences

Laser activated gold pyramids could deliver drugs, DNA into cells without harm

24.03.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>