Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique detects pediatric liver disease without need for needle biopsy

20.09.2013
A new, non-invasive imaging technique, magnetic resonance elastography (MRE), can now help physicians accurately detect fibrosis (scarring) in children with chronic liver disease – a growing problem due in part to increasing obesity rates.

A new study shows that MRE detects such chronic diseases as non-alcoholic fatty liver disease (NAFLD), which is increasingly common in children and teens, affecting an estimated 13 percent of adolescents. NAFLD can lead to progressive liver disease and liver failure. Obesity is a major risk factor.

"Because many pediatrics patients in the United States with NAFLD are severely obese, MRE is likely to be superior to ultrasound-based elastography in this population, as ultrasound-based methods are less reliable in severely obese patients," says Stavra Xanthakos, MD, a gastroenterologist at Cincinnati Children's Hospital Medical Center and lead author of the study.

The study is published online in the Journal of Pediatrics. If the findings are validated in larger studies, MRE could reduce dependence on costly and invasive liver biopsies to detect fibrosis.

In 2011 and 2012, the researchers evaluated 35 children and teens between the ages of 4 and 20 for chronic liver disease using both MRE and liver biopsy. The study demonstrated that MRE was highly accurate in detecting more advanced fibrosis in children with chronic liver disease, including severely obese patients.

A needle biopsy is standard practice for evaluating liver fibrosis. This not only has risks for the patient and high expense, but it is often frightening for children and teens. MRE is a way to measure tissue stiffness that uses low frequency sound waves in combination with magnetic resonance, which involves the combination of magnetic fields and radio frequency waves to produce diagnostic images. MRE can be accomplished in just a few minutes using the MR scanner.

"Having the ability to easily and non-invasively assess the degree of fibrosis in a child's liver could help us identify the issue early and being the right course of treatment in a timely and effective manner," says Daniel Podberesky, MD, chief of thoracoabdominal imaging at Cincinnati Children's and a co-author of the study. "An added strength of magnetic resonance technology is the ability to more precisely measure liver fat, which allows us to non-invasively determine changes in liver fat quantity after clinical interventions."

"Our results show the exciting potential of MRE to improve clinical care and reduce dependence on liver biopsies, but it is not yet ready for primetime clinical use," adds Dr. Xanthakos. "In addition to validation in larger pediatric cohorts, we still need to determine whether MRE can predict changes in liver disease over time. We hope to study MRE in patients to test how well changes in imaging correlate with changes in liver stiffness after treatment or lifestyle changes."

Dr. Xanthakos co-directs the Cincinnati Children's Steatohepatitis Center. Steatohepatitis is an advanced stage of fatty liver disease.

In all, physicians at Cincinnati Children's have successfully evaluated more than 200 children using liver MRE with no adverse events.

The study was supported by National Institutes of Health (NIH) grants K23DK080888 and K08DK084310 and by the National Center for Research Resources and the National Center for Advancing Translational Sciences (Grant 8 UL1 TR000077-04).

About Cincinnati Children's

Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S.News and World Report's 2013 Best Children's Hospitals ranking. It is ranked #1 for cancer and in the top 10 for nine of 10 pediatric specialties. Cincinnati Children's, a non-profit organization, is one of the top three recipients of pediatric research grants from the National Institutes of Health, and a research and teaching affiliate of the University of Cincinnati College of Medicine. The medical center is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at http://www.cincinnatichildrens.org. Connect on the Cincinnati Children's blog, via Facebook and on Twitter.

Jim Feuer | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>