Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-contrast, high-resolution CT scans now possible at reduced dose

05.06.2012
Soft body tissue can now be imaged with incredible detail using X-rays thanks to a new low dose CT-scan technique

Jointly released by ESRF - TU München and Synchrotron SOLEIL


This shows 3D renderings of rat testicle (different cuts through the same tomogram). Detail within the image shows the epididymis (blue), adipose tissue (yellowish) and the testis itself. Inside the testis, clearly visible are the seminiferous tubules (with concentric structure) and the vessels (in dark red) especially visible at the edges of the organ. Image data collected at ESRF beamline ID19
Credit: ESRF/I. Zanette

Scientists have developed an X-ray imaging method that could drastically improve the contrast of computed tomography (CT) scans whilst reducing the radiation dose deposited during the scan. The new method is based on the combination of the high contrast obtained by an X-ray technique known as grating interferometry with the three-dimensional capabilities of CT. It is also compatible with clinical CT apparatus, where an X-ray source and detector rotate continuously around the patient during the scan. The results are published in Proceedings of the National Academy of Sciences (PNAS) dated 4-8 June 2012.

The main author of the paper is Irene Zanette from the European Synchrotron Radiation Facility ESRF (Grenoble, FR) and Technical University of Munich TUM (DE), and the team also comprises scientists from the Paul Scherrer Institute PSI (Villigen, CH), the Karlsruhe Institute of Technology KIT (DE), and Synchrotron SOLEIL (Gif-sur-Yvette, FR).

The conventional way of producing X-ray images is to shine an X-ray beam on the investigated object and measure the transmitted intensity behind it. This is the method that W.C. Röntgen developed in 1895, just after he discovered X-rays. To the present day, it is commonly used, for example, in hospitals and for security screening at airports. However, since this technique relies on variations in how the different constituents of an object absorb X-rays, it also has severe limitations notably in medical X-raying where cancerous and healthy soft tissue often do not show enough contrast to be clearly distinguished.

In the past years, a lot of effort has therefore been put into the development of new X-ray imaging techniques that do not rely solely on absorption but increase the contrast through the observation of other types of interaction between X-rays and matter.

Of these new methods, a very promising one is the so-called "X-ray grating interferometry", in which microstructures, gratings developed at PSI and KIT, serve as optical elements for X-rays. The setup for this contrast-enhancing technique is simple and compact, and it can be combined with computed tomography (CT) X-ray scanners to yield virtual slice images and full 3D information of an object. Over the past decade, grating interferometry has been constantly improved, with a focus on medical applications.

The team of scientists has now made an important step towards clinical implementation of this technique – a new measurement protocol called "sliding window" technique. "We wanted to shorten the gap between the potential offered by this extremely powerful technique and its application in the biomedical field. Our sliding window method reduces the dose and acquisition time and makes grating interferometry compatible with the continuous rotation of the gantry used in clinical CT", says Timm Weitkamp from Synchrotron SOLEIL.

Grating interferometry uses, in addition to information on absorption, measurements of X-ray phase changes to produce "differential phase contrast" images. Density differences of only 0.5 mg/cm3 can be discerned using grating-based phase contrast.

To demonstrate the exceptional resolution of the new technique, various soft tissue body parts of a small mammalian specimen, a rat, were imaged. Within the tests, rendered in 3D, minute details are visible such as the individual seminiferous tubules, tiny tubes in which sperm cells are formed. "These structures are simply invisible in standard CT, even in high-resolution setups – not only because of their tiny size, but even more so because they hardly give any contrast", explains Zanette, who was recently presented the ESRF Young Scientist Award for her work.

In addition to phase contrast, grating interferometry can also yield so-called "dark-field" tomography images. These show the presence of sub-pixel-size structures in the object, such as fibres, cracks or nanosized pores. In the study now reported in PNAS, wings of a wasp fossilised in amber – mostly invisible in previous X-ray investigations of the same specimen – were revealed in their full length with the dark-field signal. These results encourage the use of dark-field imaging not only in palaeontology and materials science, but also in the medical field, for example to reveal minuscule cracks in bones or small fibres in soft tissue.

The complementarity of the image signals accessed with grating interferometry and the new simple and fast acquisition procedure make grating interferometry an attractive technique for high-sensitivity imaging in the biomedical field, in materials science and in palaeontology, and possibly also in future hospital CT scanners.

Claus Habfast | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Medical Engineering:

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

nachricht Theranostic nanoparticles for tracking and monitoring disease state
13.11.2017 | SLAS (Society for Laboratory Automation and Screening)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>