Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-contrast, high-resolution CT scans now possible at reduced dose

05.06.2012
Soft body tissue can now be imaged with incredible detail using X-rays thanks to a new low dose CT-scan technique

Jointly released by ESRF - TU München and Synchrotron SOLEIL


This shows 3D renderings of rat testicle (different cuts through the same tomogram). Detail within the image shows the epididymis (blue), adipose tissue (yellowish) and the testis itself. Inside the testis, clearly visible are the seminiferous tubules (with concentric structure) and the vessels (in dark red) especially visible at the edges of the organ. Image data collected at ESRF beamline ID19
Credit: ESRF/I. Zanette

Scientists have developed an X-ray imaging method that could drastically improve the contrast of computed tomography (CT) scans whilst reducing the radiation dose deposited during the scan. The new method is based on the combination of the high contrast obtained by an X-ray technique known as grating interferometry with the three-dimensional capabilities of CT. It is also compatible with clinical CT apparatus, where an X-ray source and detector rotate continuously around the patient during the scan. The results are published in Proceedings of the National Academy of Sciences (PNAS) dated 4-8 June 2012.

The main author of the paper is Irene Zanette from the European Synchrotron Radiation Facility ESRF (Grenoble, FR) and Technical University of Munich TUM (DE), and the team also comprises scientists from the Paul Scherrer Institute PSI (Villigen, CH), the Karlsruhe Institute of Technology KIT (DE), and Synchrotron SOLEIL (Gif-sur-Yvette, FR).

The conventional way of producing X-ray images is to shine an X-ray beam on the investigated object and measure the transmitted intensity behind it. This is the method that W.C. Röntgen developed in 1895, just after he discovered X-rays. To the present day, it is commonly used, for example, in hospitals and for security screening at airports. However, since this technique relies on variations in how the different constituents of an object absorb X-rays, it also has severe limitations notably in medical X-raying where cancerous and healthy soft tissue often do not show enough contrast to be clearly distinguished.

In the past years, a lot of effort has therefore been put into the development of new X-ray imaging techniques that do not rely solely on absorption but increase the contrast through the observation of other types of interaction between X-rays and matter.

Of these new methods, a very promising one is the so-called "X-ray grating interferometry", in which microstructures, gratings developed at PSI and KIT, serve as optical elements for X-rays. The setup for this contrast-enhancing technique is simple and compact, and it can be combined with computed tomography (CT) X-ray scanners to yield virtual slice images and full 3D information of an object. Over the past decade, grating interferometry has been constantly improved, with a focus on medical applications.

The team of scientists has now made an important step towards clinical implementation of this technique – a new measurement protocol called "sliding window" technique. "We wanted to shorten the gap between the potential offered by this extremely powerful technique and its application in the biomedical field. Our sliding window method reduces the dose and acquisition time and makes grating interferometry compatible with the continuous rotation of the gantry used in clinical CT", says Timm Weitkamp from Synchrotron SOLEIL.

Grating interferometry uses, in addition to information on absorption, measurements of X-ray phase changes to produce "differential phase contrast" images. Density differences of only 0.5 mg/cm3 can be discerned using grating-based phase contrast.

To demonstrate the exceptional resolution of the new technique, various soft tissue body parts of a small mammalian specimen, a rat, were imaged. Within the tests, rendered in 3D, minute details are visible such as the individual seminiferous tubules, tiny tubes in which sperm cells are formed. "These structures are simply invisible in standard CT, even in high-resolution setups – not only because of their tiny size, but even more so because they hardly give any contrast", explains Zanette, who was recently presented the ESRF Young Scientist Award for her work.

In addition to phase contrast, grating interferometry can also yield so-called "dark-field" tomography images. These show the presence of sub-pixel-size structures in the object, such as fibres, cracks or nanosized pores. In the study now reported in PNAS, wings of a wasp fossilised in amber – mostly invisible in previous X-ray investigations of the same specimen – were revealed in their full length with the dark-field signal. These results encourage the use of dark-field imaging not only in palaeontology and materials science, but also in the medical field, for example to reveal minuscule cracks in bones or small fibres in soft tissue.

The complementarity of the image signals accessed with grating interferometry and the new simple and fast acquisition procedure make grating interferometry an attractive technique for high-sensitivity imaging in the biomedical field, in materials science and in palaeontology, and possibly also in future hospital CT scanners.

Claus Habfast | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>