Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-contrast, high-resolution CT scans now possible at reduced dose

05.06.2012
Soft body tissue can now be imaged with incredible detail using X-rays thanks to a new low dose CT-scan technique

Jointly released by ESRF - TU München and Synchrotron SOLEIL


This shows 3D renderings of rat testicle (different cuts through the same tomogram). Detail within the image shows the epididymis (blue), adipose tissue (yellowish) and the testis itself. Inside the testis, clearly visible are the seminiferous tubules (with concentric structure) and the vessels (in dark red) especially visible at the edges of the organ. Image data collected at ESRF beamline ID19
Credit: ESRF/I. Zanette

Scientists have developed an X-ray imaging method that could drastically improve the contrast of computed tomography (CT) scans whilst reducing the radiation dose deposited during the scan. The new method is based on the combination of the high contrast obtained by an X-ray technique known as grating interferometry with the three-dimensional capabilities of CT. It is also compatible with clinical CT apparatus, where an X-ray source and detector rotate continuously around the patient during the scan. The results are published in Proceedings of the National Academy of Sciences (PNAS) dated 4-8 June 2012.

The main author of the paper is Irene Zanette from the European Synchrotron Radiation Facility ESRF (Grenoble, FR) and Technical University of Munich TUM (DE), and the team also comprises scientists from the Paul Scherrer Institute PSI (Villigen, CH), the Karlsruhe Institute of Technology KIT (DE), and Synchrotron SOLEIL (Gif-sur-Yvette, FR).

The conventional way of producing X-ray images is to shine an X-ray beam on the investigated object and measure the transmitted intensity behind it. This is the method that W.C. Röntgen developed in 1895, just after he discovered X-rays. To the present day, it is commonly used, for example, in hospitals and for security screening at airports. However, since this technique relies on variations in how the different constituents of an object absorb X-rays, it also has severe limitations notably in medical X-raying where cancerous and healthy soft tissue often do not show enough contrast to be clearly distinguished.

In the past years, a lot of effort has therefore been put into the development of new X-ray imaging techniques that do not rely solely on absorption but increase the contrast through the observation of other types of interaction between X-rays and matter.

Of these new methods, a very promising one is the so-called "X-ray grating interferometry", in which microstructures, gratings developed at PSI and KIT, serve as optical elements for X-rays. The setup for this contrast-enhancing technique is simple and compact, and it can be combined with computed tomography (CT) X-ray scanners to yield virtual slice images and full 3D information of an object. Over the past decade, grating interferometry has been constantly improved, with a focus on medical applications.

The team of scientists has now made an important step towards clinical implementation of this technique – a new measurement protocol called "sliding window" technique. "We wanted to shorten the gap between the potential offered by this extremely powerful technique and its application in the biomedical field. Our sliding window method reduces the dose and acquisition time and makes grating interferometry compatible with the continuous rotation of the gantry used in clinical CT", says Timm Weitkamp from Synchrotron SOLEIL.

Grating interferometry uses, in addition to information on absorption, measurements of X-ray phase changes to produce "differential phase contrast" images. Density differences of only 0.5 mg/cm3 can be discerned using grating-based phase contrast.

To demonstrate the exceptional resolution of the new technique, various soft tissue body parts of a small mammalian specimen, a rat, were imaged. Within the tests, rendered in 3D, minute details are visible such as the individual seminiferous tubules, tiny tubes in which sperm cells are formed. "These structures are simply invisible in standard CT, even in high-resolution setups – not only because of their tiny size, but even more so because they hardly give any contrast", explains Zanette, who was recently presented the ESRF Young Scientist Award for her work.

In addition to phase contrast, grating interferometry can also yield so-called "dark-field" tomography images. These show the presence of sub-pixel-size structures in the object, such as fibres, cracks or nanosized pores. In the study now reported in PNAS, wings of a wasp fossilised in amber – mostly invisible in previous X-ray investigations of the same specimen – were revealed in their full length with the dark-field signal. These results encourage the use of dark-field imaging not only in palaeontology and materials science, but also in the medical field, for example to reveal minuscule cracks in bones or small fibres in soft tissue.

The complementarity of the image signals accessed with grating interferometry and the new simple and fast acquisition procedure make grating interferometry an attractive technique for high-sensitivity imaging in the biomedical field, in materials science and in palaeontology, and possibly also in future hospital CT scanners.

Claus Habfast | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>