Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hearing with light: Optogenetics for Auditory Research and Prosthetics

04.03.2014

An international research team led by scientists of the University Medical Center Göttingen develops the optical stimulation of the inner ear. Publication in "Journal of Clinical Investigation"

Hearing impairment is the most common human sensory deficit and has major socioeconomic impact. Hearing can be partially restored to the deaf by cochlear implant (CI), which bypass the cochlear dysfunction via direct electric stimulation of spiral ganglion neurons (SGNs).


Electrical versus optical stimulation of the cochlea:

Top: in electrical CIs usually 12-24 electrodes are used to stimulate SGNs. Current spread leads to activation of a large population of neurons along the tonotopic axis, thereby limiting the frequency resolution and dynamic range of electrical coding.

Bottom: optical stimulation promises spatially confined activation of SGNs allowing for a higher number of independent stimulation channels and, thereby, improving frequency and intensity resolution. Graph: umg

CIs enable open speech comprehension in most users, but the quality of hearing is low. This results from low frequency and intensity resolution of coding due to the wide spread of electrical current from each electrode contact. CI users have problems to understand speech in background noise and typically do not appreciate music. An international research team led by scientists of the University Medical Center Göttingen proposes to overcome this fundamental problem of CI by establishing many independent coding channels via spatially confined optical stimulation of channelrhodopsin (ChR)-expressing SGNs by tens of microscale light emitters along the tonotopic axis of the cochlea (cochlear optogenetics).

They obtained proof of principle in rodents where they activated the auditory pathway with blue light stimulation of ChR-expressing SGNs and this way could restore auditory activity in deaf mice. 

Original publication (advanced online, in the press):

Victor H Hernandez, Anna Gehrt*, Kirsten Reuter*, Zhizi Jing*, Marcus Jeschke, Alejandro Mendoza Schulz, Gerhard Hoch, Matthias Bartels, Gerhard Vogt, Carolyn W Garnham, Hiromu Yawo, Yugo Fukazawa, George J Augustine, Ernst Bamberg, Sebastian Kügler, Tim Salditt, Livia de Hoz, Nicola Strenzke, Tobias Moser (2014) Optogenetic stimulation of the auditory pathway. Journal of Clinical Investigation.

The WHO estimated that in 2005 there were 278 million people in the world with disabling hearing impairment (HI). So far, a causal treatment is not available for its most common form: sensorineural HI. Therefore, hearing aids and auditory prostheses represent the only means to restore auditory function in most hearing impaired subjects. Cochlear implants (CIs) bypass the dysfunctional sensory organ of Corti in the cochlea via direct electric stimulation of spiral ganglion neurons (SGNs). CIs enable open speech comprehension in the majority of deaf or profoundly hearing impaired users. However, users of current CIs suffer from poor comprehension of speech in noisy environments and typically do not appreciate music.

This is largely attributed to the wide-spread current around an electrode contact which leads to channel-crosstalk and limits the number of useful frequency channels to less than ten. Information coding by CIs is also limited with respect to sound intensity: the dynamic range of their output is typically below 10 dB. Increasing the frequency and intensity resolution of auditory coding with CIs is a crucial objective for improving speech comprehension. Optical stimulation is expected to dramatically increase the frequency resolution of CIs, because light enables spatially confined stimulation of SGNs, and therefore promises to overcome the limitations of current CIs (Fig. 1). In addition, activation of smaller populations of neurons can also enhance the dynamic range of coding e.g. by varying recruitment of neighboring channels.

"Because light can be conveniently focused, optical stimulation promises the use of tens to hundreds of independent stimulation channels. This innovation has the potential to fundamentally improve the discrimination of sound frequency and intensity by CI users. However, before translation into the clinic can be achieved, cochlear optogenetics will already be of enormous use in auditory research.", says Dr. Tobias Moser of the Department of Otolaryngology at the University Medical Center Göttingen, the corresponding author and team leader. The research of the team is part of the BMBF-funded Göttingen Focus for Neurotechnology as well as of the DFG-funded Göttingen Center for Nanoscale Imaging and Molecular Physiology of the Brain (CNMPB).

HOW TO MAKE COCHLEAR NEURONS SENSITIVE TO LIGHT?

In order to render the neurons light sensitive the scientist used the novel optogenetic approach of expressing the light-gated microbial ion channel channelrhodopsin. To do so the team also used harmless viral vectors similar to those presently used in clinical trials on gene-therapy of blindness. They then implanted micro-light emitting diodes (µLED) and laser-coupled micro-fibers for optical stimulation.

RESULTS

"Optogenetic activation of the auditory pathway works in rodents! We could detect light-evoked nerve impulse of individual SGNs and summed activity of pathway" says Anna Gehrt, author of the study and clinician-scientist at the Department of Otolaryngology: "Using optogenetically-evoked potentials we could demonstrate an activation of the auditory pathway in mouse models of human deafness ". Finally, the team achieved a first assessment of the frequency selectivity of optogenetic stimulation in comparison to electrical stimulation. The results agree with the predictions of a mathematical model: optical stimulation achieved better frequency selectivity than amenable to electrical stimulation.

"Much remains to be done to translate cochlear optogenetics into clinical rehabilitation of hearing impairment.” says Dr. Moser. To further develop the approach the Göttingen team also collaborates with scientists of the Freiburg Fraunhofer Institute for Applied Physics and the University of Freiburg, who develop multichannel opttical cochlear implants with more than 100 µLEDs within the BMBF funded project "Light-Hearing". Dr. Moser identifies further hurdles to take: cochlear optogenetics requires fast channelrhodopsins that can drive spiking of SGN up to a few hundreds per second. With the introduction of Chronos, a rapidly gating and light sensitive channelrhodopsin characterized by the Boyden lab at MIT, Cambridge, MA this now seems within reach. Moreover, biosafety of gene transfer and optical stimulation need to be demonstrated. 

FURTHER INFORMATION
Websites of the laboratories of Dr. T. Moser und Dr. N. Strenzke at University Medical Center Göttingen: http://www.innerearlab.uni-goettingen.de

FURTHER INFORMATION
University Medical Center Göttingen
Prof. Dr. Tobias Moser
InnerEarLab, Dept. of Otolaryngology, Head and Neck Surgery
Fon: +49-551-39-8968, tmoser@gwdg.de
www.universitaetsmedizin-goettingen.de

Stefan Weller | Universitätsmedizin Göttingen

More articles from Medical Engineering:

nachricht New investigation of endovenous laser ablation of varicose veins
11.05.2016 | Kazan Federal University

nachricht A laser for your eyes
18.04.2016 | Lomonosov Moscow State University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>