Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New GPS-like system that delivers more focused radiation to prostate cancer tumors

23.07.2010
CEDARS-SINAI’S SAMUEL OSCHIN COMPREHENSIVE CANCER INSTITUTE HAS NEW GPS-LIKE SYSTEM THAT DELIVERS MORE FOCUSED RADIATION TO PROSTATE CANCER TUMORS
A new system that utilizes a precise a GPS-like system to track prostate cancer tumors is now being offered to patients undergoing radiation therapy at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute. The monitoring system, called Calypso, allows radiation beams to more precisely target the cancer as it gives real-time positioning information that allows the radiation beams to focus directly on the cancer.

Since many organs in the body are constantly moving – including the prostate gland – this technology provides a higher level of accuracy in the delivery of radiation to the cancer while minimizing potential damage to healthy tissue.

“Our continuing efforts to provide the best therapy options to our patients include a commitment to helping them maintain or improve their quality of life during treatment,” said Howard M. Sandler, M.D., chair of radiation oncology and the Ronald H. Bloom Family Chair in Cancer Therapeutics at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute. “This system allows us to deliver radiation more accurately directly to the tumor, minimizing the risk of sexual side effects and damage to other vital organs – a real benefit to patients.”

Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute is one of only a handful of cancer centers in Southern California to offer this advanced technology to its prostate cancer patients. While the system has been cleared by the FDA for use in radiation therapy for prostate cancer, the technology will be studied for body-wide applications. To date, more than 6,000 prostate cancer patients nationwide have received radiation treatments using the Calypso’s localization system.

Before radiation treatment, patients undergo a simple outpatient procedure. Using ultrasound guidance, three transponders, each the size of a grain of rice, are implanted into the prostate through the rectum. The transponders then communicate with Calypso throughout radiation treatment using safe radiofrequency waves.

In contrast, during standard radiation treatment for prostate cancer, radiation oncologists expand the treatment target area to ensure the moving target is irradiated. In the process, more healthy tissue near the prostate may be affected, leading to a high rate of urinary, bowel and sexual side effects.

In May, Sandler was the lead author of a clinical study published in Urology, which demonstrated that prostate cancer patients who were treated with radiation and monitored with the Calypso System reported significantly reduced prostate cancer side effects than those whose radiation was not complemented by Calypso.

The Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center focuses on combining compassionate, high-quality, patient-centered care with pioneering cancer research. For more information, call 1-800-CEDARS-1 or visit www.cedars-sinai.edu

| Cedars-Sinai News
Further information:
http://www.cedars-sinai.edu
http://www.cshs.org

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>