Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New GPS-like system that delivers more focused radiation to prostate cancer tumors

23.07.2010
CEDARS-SINAI’S SAMUEL OSCHIN COMPREHENSIVE CANCER INSTITUTE HAS NEW GPS-LIKE SYSTEM THAT DELIVERS MORE FOCUSED RADIATION TO PROSTATE CANCER TUMORS
A new system that utilizes a precise a GPS-like system to track prostate cancer tumors is now being offered to patients undergoing radiation therapy at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute. The monitoring system, called Calypso, allows radiation beams to more precisely target the cancer as it gives real-time positioning information that allows the radiation beams to focus directly on the cancer.

Since many organs in the body are constantly moving – including the prostate gland – this technology provides a higher level of accuracy in the delivery of radiation to the cancer while minimizing potential damage to healthy tissue.

“Our continuing efforts to provide the best therapy options to our patients include a commitment to helping them maintain or improve their quality of life during treatment,” said Howard M. Sandler, M.D., chair of radiation oncology and the Ronald H. Bloom Family Chair in Cancer Therapeutics at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute. “This system allows us to deliver radiation more accurately directly to the tumor, minimizing the risk of sexual side effects and damage to other vital organs – a real benefit to patients.”

Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute is one of only a handful of cancer centers in Southern California to offer this advanced technology to its prostate cancer patients. While the system has been cleared by the FDA for use in radiation therapy for prostate cancer, the technology will be studied for body-wide applications. To date, more than 6,000 prostate cancer patients nationwide have received radiation treatments using the Calypso’s localization system.

Before radiation treatment, patients undergo a simple outpatient procedure. Using ultrasound guidance, three transponders, each the size of a grain of rice, are implanted into the prostate through the rectum. The transponders then communicate with Calypso throughout radiation treatment using safe radiofrequency waves.

In contrast, during standard radiation treatment for prostate cancer, radiation oncologists expand the treatment target area to ensure the moving target is irradiated. In the process, more healthy tissue near the prostate may be affected, leading to a high rate of urinary, bowel and sexual side effects.

In May, Sandler was the lead author of a clinical study published in Urology, which demonstrated that prostate cancer patients who were treated with radiation and monitored with the Calypso System reported significantly reduced prostate cancer side effects than those whose radiation was not complemented by Calypso.

The Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center focuses on combining compassionate, high-quality, patient-centered care with pioneering cancer research. For more information, call 1-800-CEDARS-1 or visit www.cedars-sinai.edu

| Cedars-Sinai News
Further information:
http://www.cedars-sinai.edu
http://www.cshs.org

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>