Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New GPS-like system that delivers more focused radiation to prostate cancer tumors

23.07.2010
CEDARS-SINAI’S SAMUEL OSCHIN COMPREHENSIVE CANCER INSTITUTE HAS NEW GPS-LIKE SYSTEM THAT DELIVERS MORE FOCUSED RADIATION TO PROSTATE CANCER TUMORS
A new system that utilizes a precise a GPS-like system to track prostate cancer tumors is now being offered to patients undergoing radiation therapy at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute. The monitoring system, called Calypso, allows radiation beams to more precisely target the cancer as it gives real-time positioning information that allows the radiation beams to focus directly on the cancer.

Since many organs in the body are constantly moving – including the prostate gland – this technology provides a higher level of accuracy in the delivery of radiation to the cancer while minimizing potential damage to healthy tissue.

“Our continuing efforts to provide the best therapy options to our patients include a commitment to helping them maintain or improve their quality of life during treatment,” said Howard M. Sandler, M.D., chair of radiation oncology and the Ronald H. Bloom Family Chair in Cancer Therapeutics at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute. “This system allows us to deliver radiation more accurately directly to the tumor, minimizing the risk of sexual side effects and damage to other vital organs – a real benefit to patients.”

Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute is one of only a handful of cancer centers in Southern California to offer this advanced technology to its prostate cancer patients. While the system has been cleared by the FDA for use in radiation therapy for prostate cancer, the technology will be studied for body-wide applications. To date, more than 6,000 prostate cancer patients nationwide have received radiation treatments using the Calypso’s localization system.

Before radiation treatment, patients undergo a simple outpatient procedure. Using ultrasound guidance, three transponders, each the size of a grain of rice, are implanted into the prostate through the rectum. The transponders then communicate with Calypso throughout radiation treatment using safe radiofrequency waves.

In contrast, during standard radiation treatment for prostate cancer, radiation oncologists expand the treatment target area to ensure the moving target is irradiated. In the process, more healthy tissue near the prostate may be affected, leading to a high rate of urinary, bowel and sexual side effects.

In May, Sandler was the lead author of a clinical study published in Urology, which demonstrated that prostate cancer patients who were treated with radiation and monitored with the Calypso System reported significantly reduced prostate cancer side effects than those whose radiation was not complemented by Calypso.

The Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center focuses on combining compassionate, high-quality, patient-centered care with pioneering cancer research. For more information, call 1-800-CEDARS-1 or visit www.cedars-sinai.edu

| Cedars-Sinai News
Further information:
http://www.cedars-sinai.edu
http://www.cshs.org

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>