Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New GPS-like system that delivers more focused radiation to prostate cancer tumors

A new system that utilizes a precise a GPS-like system to track prostate cancer tumors is now being offered to patients undergoing radiation therapy at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute. The monitoring system, called Calypso, allows radiation beams to more precisely target the cancer as it gives real-time positioning information that allows the radiation beams to focus directly on the cancer.

Since many organs in the body are constantly moving – including the prostate gland – this technology provides a higher level of accuracy in the delivery of radiation to the cancer while minimizing potential damage to healthy tissue.

“Our continuing efforts to provide the best therapy options to our patients include a commitment to helping them maintain or improve their quality of life during treatment,” said Howard M. Sandler, M.D., chair of radiation oncology and the Ronald H. Bloom Family Chair in Cancer Therapeutics at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute. “This system allows us to deliver radiation more accurately directly to the tumor, minimizing the risk of sexual side effects and damage to other vital organs – a real benefit to patients.”

Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute is one of only a handful of cancer centers in Southern California to offer this advanced technology to its prostate cancer patients. While the system has been cleared by the FDA for use in radiation therapy for prostate cancer, the technology will be studied for body-wide applications. To date, more than 6,000 prostate cancer patients nationwide have received radiation treatments using the Calypso’s localization system.

Before radiation treatment, patients undergo a simple outpatient procedure. Using ultrasound guidance, three transponders, each the size of a grain of rice, are implanted into the prostate through the rectum. The transponders then communicate with Calypso throughout radiation treatment using safe radiofrequency waves.

In contrast, during standard radiation treatment for prostate cancer, radiation oncologists expand the treatment target area to ensure the moving target is irradiated. In the process, more healthy tissue near the prostate may be affected, leading to a high rate of urinary, bowel and sexual side effects.

In May, Sandler was the lead author of a clinical study published in Urology, which demonstrated that prostate cancer patients who were treated with radiation and monitored with the Calypso System reported significantly reduced prostate cancer side effects than those whose radiation was not complemented by Calypso.

The Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center focuses on combining compassionate, high-quality, patient-centered care with pioneering cancer research. For more information, call 1-800-CEDARS-1 or visit

| Cedars-Sinai News
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>