Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glasses-free 3-D projector

19.05.2014

New design could also make conventional 2-D video higher in resolution and contrast

Over the past three years, researchers in the Camera Culture group at the MIT Media Lab have steadily refined a design for a glasses-free, multiperspective, 3-D video screen, which they hope could provide a cheaper, more practical alternative to holographic video in the short term.

Now they've designed a projector that exploits the same technology, which they'll unveil at this year's Siggraph, the major conference in computer graphics. The projector can also improve the resolution and contrast of conventional video, which could make it an attractive transitional technology as content producers gradually learn to harness the potential of multiperspective 3-D.

Multiperspective 3-D differs from the stereoscopic 3-D now common in movie theaters in that the depicted objects disclose new perspectives as the viewer moves about them, just as real objects would. This means it might have applications in areas like collaborative design and medical imaging, as well as entertainment.

... more about:
»Camera »MIT »Technology »algorithm »explains »hertz »images »produce

The MIT researchers — research scientist Gordon Wetzstein, graduate student Matthew Hirsch, and Ramesh Raskar, the NEC Career Development Associate Professor of Media Arts and Sciences and head of the Camera Culture group — built a prototype of their system using off-the-shelf components.

The heart of the projector is a pair of liquid-crystal modulators — which are like tiny liquid-crystal displays (LCDs) — positioned between the light source and the lens. Patterns of light and dark on the first modulator effectively turn it into a bank of slightly angled light emitters — that is, light passing through it reaches the second modulator only at particular angles. The combinations of the patterns displayed by the two modulators thus ensure that the viewer will see slightly different images from different angles.

The researchers also built a prototype of a new type of screen that widens the angle from which their projector's images can be viewed. The screen combines two lenticular lenses — the type of striated transparent sheets used to create crude 3-D effects in, say, old children's books.

Exploiting redundancy

For every frame of video, each modulator displays six different patterns, which together produce eight different viewing angles: At high enough display rates, the human visual system will automatically combine information from different images. The modulators can refresh their patterns at 240 hertz, or 240 times a second, so even at six patterns per frame, the system could play video at a rate of 40 hertz, which, while below the refresh rate common in today's TVs, is still higher than the 24 frames per second standard in film.

With the technology that has historically been used to produce glasses-free 3-D images — known as a parallax barrier — simultaneously projecting eight different viewing angles would mean allotting each angle one-eighth of the light emitted by the projector, which would make for a dim movie. But like the researchers' prototype monitors, the projector takes advantage of the fact that, as you move around an object, most of the visual change takes place at the edges. If, for instance, you were looking at a blue mailbox as you walked past it, from one step to the next, much of your visual field would be taken up by a blue of approximately the same shade, even though different objects were coming into view behind it.

Algorithmically, the key to the researchers' system is a technique for calculating how much information can be preserved between viewing angles and how much needs to be varied. Preserving as much information as possible enables the projector to produce a brighter image. The resulting set of light angles and intensities then has to be encoded into the patterns displayed by the modulators. That's a tall computational order, but by tailoring their algorithm to the architecture of the graphics processing units designed for video games, the MIT researchers have gotten it to run almost in real time. Their system can receive data in the form of eight images per frame of video and translate it into modulator patterns with very little lag.

Bridge technology

Passing light through two modulators can also heighten the contrast of ordinary 2-D video. One of the problems with LCD screens is that they don't enable "true black": A little light always leaks through even the darkest regions of the display. "Normally you have contrast of, let's say, values between 0 and 1," Wetzstein explains. "That's the full contrast, but in practice, all modulators have something like 0.1 to 1. So you get this 'black level.' But if you multiply two optically together, the black level goes down to 0.01. If you show black on one, which is 10 percent, and black on the other, which is also 10 percent, what you get through is 1 percent. So it's much more black."

By the same token, Hirsch explains, if the patterns displayed on the modulators are slightly offset from each other, the light passing through them will interfere with itself in ways that actually heighten the resolution of the resulting images. Again, the researchers have developed an algorithm that can calculate those patterns on the fly.

As content creators move to so-called "quad HD," video with four times the resolution of today's high-definition video, the combination of higher contrast and higher resolution could make a commercial version of the researchers' technology appealing to theater owners, which in turn could smooth the way for the adoption of multiperspective 3-D. "One thing you could do — and this is what actual projector manufacturers have done in the recent past — is take four 1080p modulators and put them next to each other and build some very complicated optics to tile them all seamlessly and then get a much nicer lens because you have to project a much smaller spot and bundle that all up together," Hirsch says. "We're saying you could take two 1080p modulators, stick them in your projector one after the other, then take your same old 1080p lens and project through it and use this software algorithm, and you end up with a 4k image. But not only that, it's got even higher contrast."

###

Written by Larry Hardesty, MIT News Office

Additional background

ARCHIVE: Glasses-free 3-D TV looks nearer http://newsoffice.mit.edu/2012/glasses-free-3d-television-0712

ARCHIVE: Better glasses-free 3-D http://newsoffice.mit.edu/2011/glasses-free-3d-0504

ARCHIVE: In Profile: Ramesh Raskar http://newsoffice.mit.edu/2011/profile-raskar-0929

Abby Abazorius | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: Camera MIT Technology algorithm explains hertz images produce

More articles from Medical Engineering:

nachricht Fraunhofer ITEM takes over and continues development of inhalation technology assets from Takeda
10.02.2016 | Fraunhofer Institute for Toxicology and Experimental Medicine

nachricht Laser-assisted wound closure for oral and maxillofacial surgery
09.02.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

Chemical cages: New technique advances synthetic biology

10.02.2016 | Life Sciences

Engineering researchers use laser to 'weld' neurons

10.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>