Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early data show potential for investigational bioengineered vessel as dialysis graft

21.11.2013
An investigational, man-made blood vessel used in vascular grafts for kidney dialysis patients may potentially show encouraging early results among study patients in Poland, according to preliminary data reported Wednesday by a researcher at Duke Medicine.

Presented at the American Heart Association Scientific Sessions meeting in Dallas, the early findings of this interim patient data track 28 hemodialysis patients who received grafts using the investigational bioengineered vessel during a multi-center study launched in Poland last December.


An investigational bioengineered blood vessel was engrafted in a US patient for the first time in June 2013 at Duke University Hospital.

Credit: Shawn Rocco, Duke Medicine

The investigational bioengineered blood vessel, designed to be the first off-the-shelf product incorporating human tissue in the bioengineering process, provided blood flow in 100 percent of the study patients, reported Jeffrey H. Lawson, M.D., Ph.D., professor of surgery and pathology at Duke University School of Medicine. Eight patients later lost blood flow, but it was restored with interventions in each case.

Lawson said there is a significant need for alternative types of vascular technology. Current synthetic vascular grafts used for hemodialysis access provide initial blood flood in less than 50 percent of patients at six months, and with secondary interventions the success rates rises to 77 percent, Lawson said.

Preliminary interim analysis of the investigational bioengineered vessel currently being used for dialysis among the Polish patients has resulted in no infections to date, no immune reactions and no sign of structural degeneration.

"These early data are very encouraging," said Lawson, who performed the first U.S. implantation of the blood vessel in June in a patient with end-stage kidney disease. "Longer term evaluations in a larger patient population are needed to confirm the early findings, but we are hopeful the technology continues to demonstrate potential benefit to dialysis patients."

The investigational bioengineered blood vessel is manufactured by Humacyte, Inc., a Duke University spin-off company from the lab of Laura Niklason, M.D., Ph.D., who is now vice chair of anesthesia and a professor of biomedical engineering at Yale University. Lawson has collaborated with Niklason and Humacyte for over 15 years to develop the bioengineered vessels.

The technology uses donated human tissue that grows on a biodegradable tubular scaffold, which gradually dissolves as the cells grow. The resulting vessel is then rinsed of its cellular properties, creating a collagen structure that does not appear in preliminary studies to trigger an immune response when implanted in humans. That feature, if established in future studies, could enable it to be mass-produced without tailoring it to individual patients.

The investigational bioengineered vessel is being tested initially as a vascular graft for patients with end-stage kidney disease who need dialysis procedures. An estimated 380,000 people in the United States receive dialysis, and costs associated with vein access complications are significant.

Subject to review and approval from regulatory agencies, subsequent tests of the technology are planned for replacement or bypass of diseased and injured blood vessels.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>