Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early data show potential for investigational bioengineered vessel as dialysis graft

21.11.2013
An investigational, man-made blood vessel used in vascular grafts for kidney dialysis patients may potentially show encouraging early results among study patients in Poland, according to preliminary data reported Wednesday by a researcher at Duke Medicine.

Presented at the American Heart Association Scientific Sessions meeting in Dallas, the early findings of this interim patient data track 28 hemodialysis patients who received grafts using the investigational bioengineered vessel during a multi-center study launched in Poland last December.


An investigational bioengineered blood vessel was engrafted in a US patient for the first time in June 2013 at Duke University Hospital.

Credit: Shawn Rocco, Duke Medicine

The investigational bioengineered blood vessel, designed to be the first off-the-shelf product incorporating human tissue in the bioengineering process, provided blood flow in 100 percent of the study patients, reported Jeffrey H. Lawson, M.D., Ph.D., professor of surgery and pathology at Duke University School of Medicine. Eight patients later lost blood flow, but it was restored with interventions in each case.

Lawson said there is a significant need for alternative types of vascular technology. Current synthetic vascular grafts used for hemodialysis access provide initial blood flood in less than 50 percent of patients at six months, and with secondary interventions the success rates rises to 77 percent, Lawson said.

Preliminary interim analysis of the investigational bioengineered vessel currently being used for dialysis among the Polish patients has resulted in no infections to date, no immune reactions and no sign of structural degeneration.

"These early data are very encouraging," said Lawson, who performed the first U.S. implantation of the blood vessel in June in a patient with end-stage kidney disease. "Longer term evaluations in a larger patient population are needed to confirm the early findings, but we are hopeful the technology continues to demonstrate potential benefit to dialysis patients."

The investigational bioengineered blood vessel is manufactured by Humacyte, Inc., a Duke University spin-off company from the lab of Laura Niklason, M.D., Ph.D., who is now vice chair of anesthesia and a professor of biomedical engineering at Yale University. Lawson has collaborated with Niklason and Humacyte for over 15 years to develop the bioengineered vessels.

The technology uses donated human tissue that grows on a biodegradable tubular scaffold, which gradually dissolves as the cells grow. The resulting vessel is then rinsed of its cellular properties, creating a collagen structure that does not appear in preliminary studies to trigger an immune response when implanted in humans. That feature, if established in future studies, could enable it to be mass-produced without tailoring it to individual patients.

The investigational bioengineered vessel is being tested initially as a vascular graft for patients with end-stage kidney disease who need dialysis procedures. An estimated 380,000 people in the United States receive dialysis, and costs associated with vein access complications are significant.

Subject to review and approval from regulatory agencies, subsequent tests of the technology are planned for replacement or bypass of diseased and injured blood vessels.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Medical Engineering:

nachricht Novel PET imaging agent could help guide therapy for brain diseases
03.04.2018 | Society of Nuclear Medicine and Molecular Imaging

nachricht New Computer Architecture: Time Lapse for Dementia Research
29.03.2018 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>