Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Camouflage for Cardiovascular Stents

09.10.2012
NFB and Microbiology Researcher to Lead €1.2 million EU Project on Stent Development

A new type of cardiovascular stent, coated in antibodies to improve biocompatibility and effectiveness, is now under development in Ireland and Poland. Scientists at National University of Ireland Galway are to lead a €1.2 million EU project which aims to reduce re-narrowing of arteries and the need for further interventions, through the development of novel cardiovascular stent materials.

National University of Ireland Galway’s Network of Excellence for Functional Biomaterials (NFB), a Science Foundation Ireland funded strategic research cluster, and the University’s microbiology department will head the four year project. This is the fifth successful EC funded grant that NFB has secured in the last two years.

“About half of all deaths from cardiovascular diseases are due to coronary artery disease, which occurs when the coronary arteries become hardened and narrowed due to the build-up of plaques on their inner walls or lining,” explains National University of Ireland Galway microbiologist Dr Gerard Wall, who is leading the project. “This EU project brings together researchers from important medical device clusters in Ireland and Poland, involved at all stages of the stent design and development pipeline, to develop a novel product to reduce restenosis, which is one of the major current limitations of stent performance.”

“Our plan is to create a new type of coating on the stents using human antibody fragments,” explains Dr Wall. “Once the stent is in place, we hope these antibodies will attract a layer of the patient’s own epithelial cells. This should effectively camouflage the stent as far as the body is concerned, and it will no longer be such a foreign object. Our theory is that this will reduce the potential for rejection, the level of clot build-up, and also significantly improve the long-term outcome of surgical interventions.”

Coronary heart diseases, including myocardial infarction, are commonly triggered by the build up of plaques in the inner walls of coronary arteries, leading to stenosis and reduced blood flow to the heart. This is the most common cause of death in Europe, accounting for approximately two million deaths each year.

This condition can be successfully treated by angioplasty to reopen blockages and the insertion of a stent to keep arteries open. However, not all stents continue to perform perfectly over time. Cells such as macrophages and smooth muscle cells can grow over the stent surface and cause clot formation, once again clogging the arteries. While anti-clotting drugs can be used, the risk of rejection of the foreign stent material remains a problem.

The project brings together three academic partners National University of Ireland Galway, and Poland’s Wroc³aw University of Technology and Wroc³aw Medical University. These are joined by Vornia, a Galway-based start-up biomedical company and the multi-national stent manufacturer Balton, which has its headquarters in Poland.

The project is funded under the Marie Curie Industry-Academia Partnerships and Pathways (IAPP) scheme of the EU’s FP7 2012 People Work Programme. The programme will provide cross-sectoral research training, career development opportunities and knowledge sharing pathways to 16 researchers involved in the project, in addition to hosting networking and dissemination events open to 30-40 additional researchers in the partner groups.

“The project is an excellent example of the importance of strong industry-academia cooperation in the development of commercially viable products,” adds Dr Wall. “Both university and industry-based researchers will spend considerable time working in the opposite work sector during the project as both sectors recognise that genuine partnership in this manner is the best way to nurture creative research ideas into leading edge products that have unmet clinical need.”

Ruth Hynes | alfa
Further information:
http://www.nuigalway.ie

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>