Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A "Magnetic" Solution to Identify and Kill Tumors

10.08.2010
TAU researcher develops nano-methods for treating cancer tumors with heat and magnets

Though a valuable weapon against cancerous tumors, radiation therapy often harms healthy tissue as it tries to kill malignant cells. Now, Prof. Israel Gannot of Tel Aviv University's Department of Biomedical Engineering is developing a new way to destroy tumors with fewer side effects and minimal damage to surrounding tissue.

His innovative method, soon to be published in the journal Nanomedicine, uses heat to kill the tumor cells but leaves surrounding healthy tissue intact. Using specific biomarkers attached to individual tumors, Prof. Gannot's special mixture of nano-particles and antibodies locates and binds to the tumor itself.

"Once the nano-particles bind to the tumor, we excite them with an external magnetic field, and they begin to heat very specifically and locally," says Prof. Gannot. The magnetic field is manipulated to create a targeted rise in temperature, and it is this directed heat elevation which kills the tumors, he says.

The treatment has been proven effective against epithelial cancers, which can develop in almost any area of the body, such as the breast or lung. By using a special feedback process, also developed in his laboratory, the process can be optimized for individual treatment.

A cure without casualty

Human lung epithelial tumor cell among healthy epithelial cells

The specialized cocktail of nano-particles and antibodies is administered safely and simply, through topical local injection or injection into the blood stream. As an added benefit, the mixture washes out of the body without leaving a trace, minimizing side effects.

If clinical trials are successful, the technique may become a mainstay of patient care. The nano-particles themselves are already FDA-approved, and according to Prof. Gannot, the method is effective almost any type of tumor, as long as its specific markers and its antibodies can be identified.

The countdown to demolition

In addition to being minimally invasive, this treatment boasts sheer speed. It can be applied during an out-patient procedure — the entire technique lasts only six hours — which allows patients to recuperate in the comfort of their own homes.

Prof. Gannot is currently applying his technique to cell lines and to ex vivo tissues and tissue-like substitutes in his lab, and plans to start in vivo experiments by next year.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>