Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sometimes, the rubber meets the road when you don't want it to

05.03.2013
Arresting a fleeing vehicle at the push of a button

Back in 2010, the ideas behind a squid's sticky tendrils and Spiderman's super-strong webbing were combined to create a prototype for the first remote device able to stop vehicles in their tracks: the Safe, Quick, Undercarriage Immobilization Device (SQUID). At the push of a button, spiked arms shot out and entangled in a car's axles—bringing a racing vehicle to a screeching halt.*


The Pit-BUL™ is a remotely activated tricked out speed bump that stops target vehicles in their tracks. Credit: PSEMC

The need to stop vehicles remotely was identified by the law enforcement community. With funding from Homeland Security's Science & Technology Directorate, and the expertise of the engineers at Engineering Science Analysis Corporation (ESA), the SQUID prototype was a success. But, the engineers and law enforcement recognized that the SQUID had room for improvement.

"ESA engineers looked at SQUID to identify spiral technologies that could be gleaned from the design. The law enforcement community told us it had to be lighter and smaller," said ESA president Martín Martínez.

Using their smarts, the brainiacs of ESA, their technology and manufacturing partner Pacific Scientific Energetic Materials Company (PSEMC), and S&T, all went back to the Border Patrol agents and police officers operating the security checkpoints asking: what equipment does law enforcement need to operate faster and safer? The answer was simple: take SQUID apart and create two individual devices.

Recently patented and made commercially available, the especially unique Pit-BUL™ and NightHawk™ were the result. They can stop anything from a compact car to a full-size SUV.

Spawned from the original concept of the SQUID, the Pit-Ballistic Undercarriage Lanyard (Pit-BUL™) essentially is a tricked out speed bump. Hidden inside is a set of spikes attached to a net. When deployed, the spikes puncture the tires and the net tangles in the car's axles. Made of easy to combine panels, Pit-BUL™ can be set up for single or double lane coverage.

"If a driver blows through a checkpoint, the agent can press a button and the car's tires are spiked and netted in milliseconds," said Mark Kaczmarek, the SQUID program manager in S&T's Borders and Maritime Security Division. "No high-speed pursuit is needed, and no one's life is put at risk."

Pit-BUL™ can also be equipped with a motion activated sensor for locations needing secondary security. For example, the Pit-BUL™ can be placed near the gate of a facility. If somebody crashes through the gate when no officers are on duty, the sensor activates the Pit-BUL™ to deploy. The alleged gate crasher can be netted and stopped and then apprehended on the spot. PSEMC has performed more than 225 tests that prove Pit-BUL's instantaneous vehicle stopping power. Click here to see it stop a pursuit before it happens: http://www.youtube.com/watch?feature=player_embedded&v=r99VyJtRQIU

Evolved from the arms of the original SQUID, the NightHawk™, was also developed by PSEMC along with its partner, Stop Stick Ltd. The NightHawk™ is a remote-controlled spike strip disguised as a small suitcase. Currently, spike strips are placed by hand in the fleeing driver's path, usually at the last second so as not to impede other traffic. The NightHawk™, placed on the roadside, does not require an officer to stand nearby to deploy the device.

Traditional methods of deploying spike strips by hand in the path of a fleeing driver can put an officer's life in danger, and are not always effective. Martínez explains: "When an officer is radioed that a fleeing vehicle is approaching, they can quickly place NightHawk™ on the side of the road and move a safe distance away. When the target vehicle approaches, before the driver has a chance to react, the officer can remotely trigger the spiked arm to deploy across the street and puncture the vehicle's tires."

Pressing the remote's button a second time retracts the spikes out of the way of oncoming traffic. Within seconds, NightHawk™ can be placed, deployed, and retracted. Click here to see it in action: http://www.youtube.com/watch?feature=player_embedded&v=9h0qKsKaqMQ

"It all comes down to officer safety," said Kaczmarek. "When somebody flees, they put their life, the officers' lives, and nearby pedestrians' or commuters' lives in danger. Pit-BUL™ and NightHawk™ provide law enforcement officers the added safety as well as the ability to halt feeling vehicles from a distance."
"Police departments with a 'no pursuit policy' now have a way to bring cars to a controlled stop," said S&T Deputy Under Secretary Dan Gerstein. "Criminals are caught and police don't have to give chase. These first generation devices are the start of a change in the decades old game of cat and mouse."

* The Small Business Innovation Research (SBIR) Office in the Department of Homeland Security's Science and Technology Directorate (S&T) issued a solicitation for this need and SQUID was the response.

John Verrico | EurekAlert!
Further information:
http://www.hq.dhs.gov

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>