Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sometimes, the rubber meets the road when you don't want it to

Arresting a fleeing vehicle at the push of a button

Back in 2010, the ideas behind a squid's sticky tendrils and Spiderman's super-strong webbing were combined to create a prototype for the first remote device able to stop vehicles in their tracks: the Safe, Quick, Undercarriage Immobilization Device (SQUID). At the push of a button, spiked arms shot out and entangled in a car's axles—bringing a racing vehicle to a screeching halt.*

The Pit-BUL™ is a remotely activated tricked out speed bump that stops target vehicles in their tracks. Credit: PSEMC

The need to stop vehicles remotely was identified by the law enforcement community. With funding from Homeland Security's Science & Technology Directorate, and the expertise of the engineers at Engineering Science Analysis Corporation (ESA), the SQUID prototype was a success. But, the engineers and law enforcement recognized that the SQUID had room for improvement.

"ESA engineers looked at SQUID to identify spiral technologies that could be gleaned from the design. The law enforcement community told us it had to be lighter and smaller," said ESA president Martín Martínez.

Using their smarts, the brainiacs of ESA, their technology and manufacturing partner Pacific Scientific Energetic Materials Company (PSEMC), and S&T, all went back to the Border Patrol agents and police officers operating the security checkpoints asking: what equipment does law enforcement need to operate faster and safer? The answer was simple: take SQUID apart and create two individual devices.

Recently patented and made commercially available, the especially unique Pit-BUL™ and NightHawk™ were the result. They can stop anything from a compact car to a full-size SUV.

Spawned from the original concept of the SQUID, the Pit-Ballistic Undercarriage Lanyard (Pit-BUL™) essentially is a tricked out speed bump. Hidden inside is a set of spikes attached to a net. When deployed, the spikes puncture the tires and the net tangles in the car's axles. Made of easy to combine panels, Pit-BUL™ can be set up for single or double lane coverage.

"If a driver blows through a checkpoint, the agent can press a button and the car's tires are spiked and netted in milliseconds," said Mark Kaczmarek, the SQUID program manager in S&T's Borders and Maritime Security Division. "No high-speed pursuit is needed, and no one's life is put at risk."

Pit-BUL™ can also be equipped with a motion activated sensor for locations needing secondary security. For example, the Pit-BUL™ can be placed near the gate of a facility. If somebody crashes through the gate when no officers are on duty, the sensor activates the Pit-BUL™ to deploy. The alleged gate crasher can be netted and stopped and then apprehended on the spot. PSEMC has performed more than 225 tests that prove Pit-BUL's instantaneous vehicle stopping power. Click here to see it stop a pursuit before it happens:

Evolved from the arms of the original SQUID, the NightHawk™, was also developed by PSEMC along with its partner, Stop Stick Ltd. The NightHawk™ is a remote-controlled spike strip disguised as a small suitcase. Currently, spike strips are placed by hand in the fleeing driver's path, usually at the last second so as not to impede other traffic. The NightHawk™, placed on the roadside, does not require an officer to stand nearby to deploy the device.

Traditional methods of deploying spike strips by hand in the path of a fleeing driver can put an officer's life in danger, and are not always effective. Martínez explains: "When an officer is radioed that a fleeing vehicle is approaching, they can quickly place NightHawk™ on the side of the road and move a safe distance away. When the target vehicle approaches, before the driver has a chance to react, the officer can remotely trigger the spiked arm to deploy across the street and puncture the vehicle's tires."

Pressing the remote's button a second time retracts the spikes out of the way of oncoming traffic. Within seconds, NightHawk™ can be placed, deployed, and retracted. Click here to see it in action:

"It all comes down to officer safety," said Kaczmarek. "When somebody flees, they put their life, the officers' lives, and nearby pedestrians' or commuters' lives in danger. Pit-BUL™ and NightHawk™ provide law enforcement officers the added safety as well as the ability to halt feeling vehicles from a distance."
"Police departments with a 'no pursuit policy' now have a way to bring cars to a controlled stop," said S&T Deputy Under Secretary Dan Gerstein. "Criminals are caught and police don't have to give chase. These first generation devices are the start of a change in the decades old game of cat and mouse."

* The Small Business Innovation Research (SBIR) Office in the Department of Homeland Security's Science and Technology Directorate (S&T) issued a solicitation for this need and SQUID was the response.

John Verrico | EurekAlert!
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>