Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New design methods promise better flight-control systems —safer, cheaper, and greener aircraft

12.09.2007
A new EU project, coordinated by the Royal Institute of Technology in Stockholm, Sweden, is to develop a new computer-aided holistic solution for the early phase of aircraft design.

With knowledge from many fields, it is possible to propose the right solution for the aircraft's control system at an early stage. This reduces the risk of wasted efforts on faulty designs, which entails lower developmental costs and enhanced safety.

When a new airplane is projected, designers need knowledge and competence from many disciplines in order to make the right decisions about the plane's complex and intricately interactive systems and functions.

The EU project "Simulating aircraft stability and control characteristics for use in conceptual design" (SimSAC) is intended to facilitate the coordination of this knowledge. The budget is €5.1 million, with €3.3 million provided by the EU Commission.

"New airplanes must meet rigorous requirements for energy efficiency, environmental friendliness, aviation safety, and high performance at a low operational cost. Early multidisciplinary work that is followed up throughout the developmental process is an indispensable tool," says Arthur Rizzi, professor at the Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology, in Sweden and one of those behind the project and now coordinating it.

A control system with the right features is necessary for the safe and efficient operation of aircraft. But today control systems are usually constructed only after the main features of the plane have been determined, often using handbook and experiential data as a basis. By including the control system earlier in the developmental process, you increase the chances of getting it right the first time.

"Up to 80 percent of the total cost of an airplane's life cycle is set during the early design phase, so mistakes are expensive. Faulty assumptions about stability and control lead to costly and failed test flights. This can involve the loss of prototypes and, in the worst case, human life. To minimize risks, multidisciplinary analyses should be introduced early in the developmental process, and decisions should be based more on simulations than on empirical data," says Arthur Rizzi.

To meet these challenges, 17 leading representatives of the European academic community and the aeronautics industry from nine countries will now be collaborating in the SimSAC project. Sweden is represented by, along with the Royal Institute of Technology, the Swedish Defense Research Agency and SAAB Aerosystems. The initiative for the project came from the Royal Institute of Technology and EADS (Germany), which are both active in the field of developing designs and products that are "first-time right."

"We Europeans must step up our competence in the field, since Europe has fallen behind the U.S. Competition is also increasing from the growing Asian aeronautics industry, and this interdisciplinary project is designed to help Europe regain the lead," says Arthur Rizzi.

Out of 239 EU applications in aeronautical engineering, SimSAC was ranked sixth.

When the project concludes in October 2009, Arthur Rizzi counts on having produced a tailor-made environment of aircraft design, with support both for how better design should be carried out and for producing the best possible data for decision-making.

Magnus Myrén | alfa
Further information:
http://www.simsacdesign.org/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>