Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Teams with United Airlines to Pinpoint Turbulence in Clouds

10.09.2007
Research Can Help Reduce Delays, Injuries, Costs

A new turbulence detection system now being tested is alerting pilots to patches of rough air as they fly through clouds. The system, designed by the National Center for Atmospheric Research (NCAR) and tested by United Airlines on commercial flights, is designed to better protect passengers from injuries caused by turbulence while reducing flight delays and lowering aviation costs.

The new system uses a mathematical method developed by NCAR scientists, known as the NEXRAD Turbulence Detection Algorithm, or NTDA, to analyze data obtained from the National Weather Service's network of Next-Generation (NEXRAD) Doppler radars. The resulting real-time snapshot of turbulence can be transmitted to pilots in the cockpit and made available to airline meteorologists and dispatchers via a Web-based display.

The research is funded by the Federal Aviation Administration (FAA) in partnership with the National Science Foundation, NCAR's primary sponsor.

"Pinpointing turbulence in clouds and thunderstorms is a major scientific challenge," says NCAR scientist John Williams. "Our goal is to use these radar measurements to create a three-dimensional mosaic showing turbulence across the country that can help pilots avoid hazardous areas, or at least give them enough warning to turn on the 'fasten seat belt' sign."

The NTDA is being tested until October by a group of United Airlines pilots who fly routes east of the Rockies. The pilots, who receive information in their cockpits about turbulence detected ahead, report that the system provides them with accurate information about turbulence that is not available from any other source.

"The messages I've received in the cockpit gave a very accurate picture of turbulence location and intensity," says Captain Rocky Stone, chief technical pilot for United Airlines. "The depiction of turbulence intensity provides an unprecedented and extremely valuable new tool for pilot situational awareness."

Depending on the results of this year's tests, the next step may be to expand the system to additional United aircraft or other airlines. Williams anticipates that, by 2011, the NTDA will provide input to a system over the contiguous United States that will update comprehensive turbulence "nowcasts" for pilots and air traffic managers every 15 minutes.

"We hope this will provide a significant boost to the aviation industry in terms of passenger comfort, safety, and reduced costs," Williams says.

New data from existing radars

Pilots in the past have lacked accurate measurements of turbulence that develops in clouds and thunderstorms, partly because turbulent areas may be small, evolve quickly, and occur outside the most intense parts of the storm. As a result, FAA guidelines suggest that planes avoid thunderstorms by at least 20 miles when possible, even though large sections of that area may contain relatively calm air.

The NTDA captures turbulence in storms by peering into clouds to analyze the distribution of winds. It reprocesses radar data to remove factors that can contaminate measurements, such as sunlight, nearby storms, or even swarms of insects flying near the radar dish. It also averages a series of measurements to improve the reliability of its turbulence estimates.

This year's tests build on smaller-scale tests with United Airlines in the summers of 2005 and 2006 that showed it was possible to successfully detect moderate-or-greater turbulence more than 80 percent of the time. NCAR scientists have refined the NTDA since then, and expect that this year's demonstration will show additional improvements to the system's accuracy.

Impacts of turbulence

The NTDA does not measure clear-air turbulence, such as that caused by the jet stream or by wind flowing over mountainous terrain. But about two out of every three turbulence encounters are associated with clouds and storms, the focus of NTDA detection.

Turbulence has major impacts on aviation. According to a review of National Traffic Safety Board data from 1992 to 2001 by the National Aviation Safety Data Analysis Center, turbulence was a factor in at least 509 accidents in the United States, including 251 deaths (mostly in the general aviation sector). Additionally, the FAA Joint Safety Analysis Team estimated that there are more than 1,000 minor turbulence-related injuries on commercial aircraft annually. Airlines lose millions of dollars every year due to turbulence because of injury claims, delays, extra fuel costs, and aircraft damage.

This research is in response to requirements and funding by the Federal Aviation Administration (FAA) via its Aviation Weather Research Program. The views expressed here are those of the authors and do not necessarily represent the official policy or position of the FAA.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>