Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Teams with United Airlines to Pinpoint Turbulence in Clouds

10.09.2007
Research Can Help Reduce Delays, Injuries, Costs

A new turbulence detection system now being tested is alerting pilots to patches of rough air as they fly through clouds. The system, designed by the National Center for Atmospheric Research (NCAR) and tested by United Airlines on commercial flights, is designed to better protect passengers from injuries caused by turbulence while reducing flight delays and lowering aviation costs.

The new system uses a mathematical method developed by NCAR scientists, known as the NEXRAD Turbulence Detection Algorithm, or NTDA, to analyze data obtained from the National Weather Service's network of Next-Generation (NEXRAD) Doppler radars. The resulting real-time snapshot of turbulence can be transmitted to pilots in the cockpit and made available to airline meteorologists and dispatchers via a Web-based display.

The research is funded by the Federal Aviation Administration (FAA) in partnership with the National Science Foundation, NCAR's primary sponsor.

"Pinpointing turbulence in clouds and thunderstorms is a major scientific challenge," says NCAR scientist John Williams. "Our goal is to use these radar measurements to create a three-dimensional mosaic showing turbulence across the country that can help pilots avoid hazardous areas, or at least give them enough warning to turn on the 'fasten seat belt' sign."

The NTDA is being tested until October by a group of United Airlines pilots who fly routes east of the Rockies. The pilots, who receive information in their cockpits about turbulence detected ahead, report that the system provides them with accurate information about turbulence that is not available from any other source.

"The messages I've received in the cockpit gave a very accurate picture of turbulence location and intensity," says Captain Rocky Stone, chief technical pilot for United Airlines. "The depiction of turbulence intensity provides an unprecedented and extremely valuable new tool for pilot situational awareness."

Depending on the results of this year's tests, the next step may be to expand the system to additional United aircraft or other airlines. Williams anticipates that, by 2011, the NTDA will provide input to a system over the contiguous United States that will update comprehensive turbulence "nowcasts" for pilots and air traffic managers every 15 minutes.

"We hope this will provide a significant boost to the aviation industry in terms of passenger comfort, safety, and reduced costs," Williams says.

New data from existing radars

Pilots in the past have lacked accurate measurements of turbulence that develops in clouds and thunderstorms, partly because turbulent areas may be small, evolve quickly, and occur outside the most intense parts of the storm. As a result, FAA guidelines suggest that planes avoid thunderstorms by at least 20 miles when possible, even though large sections of that area may contain relatively calm air.

The NTDA captures turbulence in storms by peering into clouds to analyze the distribution of winds. It reprocesses radar data to remove factors that can contaminate measurements, such as sunlight, nearby storms, or even swarms of insects flying near the radar dish. It also averages a series of measurements to improve the reliability of its turbulence estimates.

This year's tests build on smaller-scale tests with United Airlines in the summers of 2005 and 2006 that showed it was possible to successfully detect moderate-or-greater turbulence more than 80 percent of the time. NCAR scientists have refined the NTDA since then, and expect that this year's demonstration will show additional improvements to the system's accuracy.

Impacts of turbulence

The NTDA does not measure clear-air turbulence, such as that caused by the jet stream or by wind flowing over mountainous terrain. But about two out of every three turbulence encounters are associated with clouds and storms, the focus of NTDA detection.

Turbulence has major impacts on aviation. According to a review of National Traffic Safety Board data from 1992 to 2001 by the National Aviation Safety Data Analysis Center, turbulence was a factor in at least 509 accidents in the United States, including 251 deaths (mostly in the general aviation sector). Additionally, the FAA Joint Safety Analysis Team estimated that there are more than 1,000 minor turbulence-related injuries on commercial aircraft annually. Airlines lose millions of dollars every year due to turbulence because of injury claims, delays, extra fuel costs, and aircraft damage.

This research is in response to requirements and funding by the Federal Aviation Administration (FAA) via its Aviation Weather Research Program. The views expressed here are those of the authors and do not necessarily represent the official policy or position of the FAA.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Transportation and Logistics:

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>