Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rotary engine technology takes off in general aviation

General aviation is currently in a high-growth phase and is desperately looking for new aircraft engine technologies. The four-stroke piston engine technology used in the majority of planes involved in general aviation dates back 60 years.

So, while designs are well proven, motors require some 70 or 80 moving parts and still use 100-octane low-leaded (100 LL) fuel that has long been displaced by kerosene for commercial aircraft. Thanks to EUREKA project E! 2743 KERO, advances in combustion chamber design and electronic management systems are making it possible to develop a reliable rotary engine for small planes running on standard kerosene jet fuel.

Swiss project leader Mistral Engines saw a major market for a safer, more reliable motor that could be easily adapted to any model of light aircraft and able to run on industry standard fuel. The design is based on the Wankel rotary engine developed in Germany in the 1930s but emerged at the wrong time. So far, it has only really been developed and commercialised by Japanese car maker Mazda in its RX-8 and previous models.

Safety and reliability are key factors in aviation. Advantages of the design include excellent reliability as there are few moving parts, a high power-to-weight ratio, compactness and smooth running compared with conventional piston-engine designs. Moreover, the engine will run on widely available standard commercial aviation fuels. The Wankel engine has a rotor instead of reciprocating pistons, doing away with any need for crankshafts, pistons and springs and reducing the number of moving parts to only two or three. Modern electronics has now made it possible to overcome timing and injection control complications, resulting also in similar fuel consumption figures to piston engines.

Several partners are involved in the EUREKA project. The Ecole Polytechnique Fédérale de Lausanne (EPFL) is studying the best combustion conditions for the kerosene in terms of combustion-chamber design, injection and ignition. “We are also now developing a special exhaust silencer with the EPFL to limit the noise, using active and passive noise- reduction technologies able to work at very high temperatures,” adds Geles. “This has not been done before.”

EUREKA labelling played a key role in obtaining funding for the KERO project. “While we managed to start the work with ‘pocket money’”, explains Claude Geles, chairman of Mistral. “EUREKA labelling enabled us to put together the10 million euro in private equity financing that we needed to see the project through to a fully certified product ready for manufacture.” Most of the technical problems have already been overcome –one problem still being tackled is pushing away the detonation, or pre-ignition, limit. Nevertheless, Geles predicts full FAA certification within 18 months of the project ending. The sky is then literally the limit!

Sally Horspool | alfa
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>