Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European first in aerospace engineering

19.01.2007
Europe’s first state-of-the-art waterjet machining technology centre is set to open at The University of Nottingham.

The School of Mechanical, Materials and Manufacturing Engineering is joining forces with Rolls Royce, the East Midlands Development Agency (emda) and the Midlands Aerospace Alliance to establish the £1.1 million centre, which will explore how the technology can be used to create parts for the aerospace industry.

Waterjet cutting technology is one of the fastest growing machine tool processes in the world, as the equipment is versatile and easy to operate. However, in the UK the process has been predominantly limited so far to ‘flat bed’ techniques — cutting two dimensional objects from sheets of raw material.

Engineers at the new centre will use a six-axis waterjet machine, capable of cutting three dimensional parts from blocks of metal, to develop new processes and techniques.

“It’s a method that’s particularly suited to aerospace engineering,” said Professor Ian Pashby, who leads the project. “The metals used within the industry are difficult to cut and machine using other methods. Waterjet technology is very precise and adaptable — it can even be used to cut food.”

The waterjet process is also more environmentally-friendly than other machine cutting techniques. The six-axis waterjet can be used to create ‘pockets’ within blocks of metal that are essential to the manufacture of aerospace parts. Currently, corrosive acids are used to do this, which must then be disposed of separately. The waterjet machine uses just water and grit. “Which is not as nasty as the chemicals used elsewhere,” said Professor Pashby.

Stephen Burgess, Rolls-Royce Manufacturing Process and Technology Director, added: “Waterjet manufacturing can be and has been used to reduce the cost and environmental impact of producing and refurbishing our components. It is suitable for many commodities in our supply chain as well as processing next generation materials and structures. The machine at the University of Nottingham will allow us and the aerospace industry to research and develop solutions to a range of manufacturing challenges.”

A £492,000 grant from emda has been used to purchase new equipment. Rolls Royce and the University are supporting technical development at the centre. The centre is unique in UK engineering and is the first time the technology has been used for the aerospace industry outside of the US. It will be an important resource for the engineering and manufacturing businesses based in the East Midlands, making them more competitive within the global aerospace market.

Mike Carr, emda's Executive Director of Business Services, commented: "In a global economy where the scope to compete on a cost basis is increasingly limited, innovation is crucial in maintaining the competitive advantage. We are pleased to support this project, and recognise that Rolls Royce and the University of Nottingham - alongside other Universities and businesses in the East Midlands - are leading the way in developing new and exciting technologies, contributing to the vision of a flourishing region by 2020."

The centre will be launched at the School of Mechanical, Materials and Manufacturing Engineering on University Park on Wednesday 24th January.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>