Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European first in aerospace engineering

19.01.2007
Europe’s first state-of-the-art waterjet machining technology centre is set to open at The University of Nottingham.

The School of Mechanical, Materials and Manufacturing Engineering is joining forces with Rolls Royce, the East Midlands Development Agency (emda) and the Midlands Aerospace Alliance to establish the £1.1 million centre, which will explore how the technology can be used to create parts for the aerospace industry.

Waterjet cutting technology is one of the fastest growing machine tool processes in the world, as the equipment is versatile and easy to operate. However, in the UK the process has been predominantly limited so far to ‘flat bed’ techniques — cutting two dimensional objects from sheets of raw material.

Engineers at the new centre will use a six-axis waterjet machine, capable of cutting three dimensional parts from blocks of metal, to develop new processes and techniques.

“It’s a method that’s particularly suited to aerospace engineering,” said Professor Ian Pashby, who leads the project. “The metals used within the industry are difficult to cut and machine using other methods. Waterjet technology is very precise and adaptable — it can even be used to cut food.”

The waterjet process is also more environmentally-friendly than other machine cutting techniques. The six-axis waterjet can be used to create ‘pockets’ within blocks of metal that are essential to the manufacture of aerospace parts. Currently, corrosive acids are used to do this, which must then be disposed of separately. The waterjet machine uses just water and grit. “Which is not as nasty as the chemicals used elsewhere,” said Professor Pashby.

Stephen Burgess, Rolls-Royce Manufacturing Process and Technology Director, added: “Waterjet manufacturing can be and has been used to reduce the cost and environmental impact of producing and refurbishing our components. It is suitable for many commodities in our supply chain as well as processing next generation materials and structures. The machine at the University of Nottingham will allow us and the aerospace industry to research and develop solutions to a range of manufacturing challenges.”

A £492,000 grant from emda has been used to purchase new equipment. Rolls Royce and the University are supporting technical development at the centre. The centre is unique in UK engineering and is the first time the technology has been used for the aerospace industry outside of the US. It will be an important resource for the engineering and manufacturing businesses based in the East Midlands, making them more competitive within the global aerospace market.

Mike Carr, emda's Executive Director of Business Services, commented: "In a global economy where the scope to compete on a cost basis is increasingly limited, innovation is crucial in maintaining the competitive advantage. We are pleased to support this project, and recognise that Rolls Royce and the University of Nottingham - alongside other Universities and businesses in the East Midlands - are leading the way in developing new and exciting technologies, contributing to the vision of a flourishing region by 2020."

The centre will be launched at the School of Mechanical, Materials and Manufacturing Engineering on University Park on Wednesday 24th January.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>