Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's first in-flight demo of multiple unmanned aircraft autonomy system

30.11.2006
QinetiQ has successfully completed the world's first flight demonstration of a system capable of controlling and autonomously organising multiple unmanned aircraft.

The successful flight trial, part of a programme of work under contract to the UK Ministry of Defence, was conducted to support the concept of using a package of self-organising unmanned air vehicles (UAVs) under the control of an operator flying in a fast jet.

Central to the QinetiQ demonstration was a BAC1-11 twin-jet aircraft that has been converted into a surrogate UAV. In addition to controlling the BAC1-11 'remotely', an operator directed a package of simulated UAVs at a strategic level and carried out a simulated ground attack on a moving target.

An autonomy computer using agent-based reasoning software was responsible for the self-organising of the UAV package at a tactical level and the operation of communication systems, sensors and weapons. The trial is a world first in demonstrating such a complex system in flight which greatly reduces the workload of the human operator.

During the flight trial the BAC1-11 flew and operated as if it was unmanned, being directed from a command station designed for use in a fast jet. Throughout the demonstration, flown from Boscombe Down airfield in Wiltshire at the end of October, a flight crew was retained for safety monitoring and control during takeoff and landing. This enabled the flight to take place largely in uncontrolled airspace over South West England negating the need for special clearance or the use of segregated airspace.

Before flights began the entire UAV system was thoroughly tested in a QinetiQ simulation environment at Bedford. This enabled the flight crew and trials team to rehearse the first real sortie 'flying' from a 'virtual' Boscombe Down using all the software and hardware that was installed in the real aircraft. This approach has realised significant cost savings through the reduction in flying hours and associated support costs.

Andrew Sleigh, Group Managing Director of QinetiQ's Defence and Technology Sector, said: "This demonstration is a wonderful achievement for the team. The success is an important step in proving that complex autonomous decision-making technologies are ready to move from a simulated world to realistic flight conditions. Ultimately this work could lead to a single human operator controlling teams of highly autonomous unmanned vehicles to carry out complex missions while reducing the risk to manned aircraft."

QinetiQ's Tornado Integrated Avionics Research Aircraft (TIARA) is currently being equipped with a UAV command and control interface and this will allow further flight trials during which the package of real and simulated aircraft (including the BAC1-11) will be commanded by the fast jet pilot while in flight. This next series of trials is expected to take place in early 2007.

In addition to developing military UAV technologies QinetiQ is actively exploring the potential civil and commercial applications of UAVs. The ability to direct multiple autonomous unmanned aircraft could deliver benefit in a range of scenarios, including a coastguard rescue, a disaster relief operation or during environmental monitoring.

Ben White | alfa
Further information:
http://www.qinetiq.com/

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>