Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's first in-flight demo of multiple unmanned aircraft autonomy system

30.11.2006
QinetiQ has successfully completed the world's first flight demonstration of a system capable of controlling and autonomously organising multiple unmanned aircraft.

The successful flight trial, part of a programme of work under contract to the UK Ministry of Defence, was conducted to support the concept of using a package of self-organising unmanned air vehicles (UAVs) under the control of an operator flying in a fast jet.

Central to the QinetiQ demonstration was a BAC1-11 twin-jet aircraft that has been converted into a surrogate UAV. In addition to controlling the BAC1-11 'remotely', an operator directed a package of simulated UAVs at a strategic level and carried out a simulated ground attack on a moving target.

An autonomy computer using agent-based reasoning software was responsible for the self-organising of the UAV package at a tactical level and the operation of communication systems, sensors and weapons. The trial is a world first in demonstrating such a complex system in flight which greatly reduces the workload of the human operator.

During the flight trial the BAC1-11 flew and operated as if it was unmanned, being directed from a command station designed for use in a fast jet. Throughout the demonstration, flown from Boscombe Down airfield in Wiltshire at the end of October, a flight crew was retained for safety monitoring and control during takeoff and landing. This enabled the flight to take place largely in uncontrolled airspace over South West England negating the need for special clearance or the use of segregated airspace.

Before flights began the entire UAV system was thoroughly tested in a QinetiQ simulation environment at Bedford. This enabled the flight crew and trials team to rehearse the first real sortie 'flying' from a 'virtual' Boscombe Down using all the software and hardware that was installed in the real aircraft. This approach has realised significant cost savings through the reduction in flying hours and associated support costs.

Andrew Sleigh, Group Managing Director of QinetiQ's Defence and Technology Sector, said: "This demonstration is a wonderful achievement for the team. The success is an important step in proving that complex autonomous decision-making technologies are ready to move from a simulated world to realistic flight conditions. Ultimately this work could lead to a single human operator controlling teams of highly autonomous unmanned vehicles to carry out complex missions while reducing the risk to manned aircraft."

QinetiQ's Tornado Integrated Avionics Research Aircraft (TIARA) is currently being equipped with a UAV command and control interface and this will allow further flight trials during which the package of real and simulated aircraft (including the BAC1-11) will be commanded by the fast jet pilot while in flight. This next series of trials is expected to take place in early 2007.

In addition to developing military UAV technologies QinetiQ is actively exploring the potential civil and commercial applications of UAVs. The ability to direct multiple autonomous unmanned aircraft could deliver benefit in a range of scenarios, including a coastguard rescue, a disaster relief operation or during environmental monitoring.

Ben White | alfa
Further information:
http://www.qinetiq.com/

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>