Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's first in-flight demo of multiple unmanned aircraft autonomy system

30.11.2006
QinetiQ has successfully completed the world's first flight demonstration of a system capable of controlling and autonomously organising multiple unmanned aircraft.

The successful flight trial, part of a programme of work under contract to the UK Ministry of Defence, was conducted to support the concept of using a package of self-organising unmanned air vehicles (UAVs) under the control of an operator flying in a fast jet.

Central to the QinetiQ demonstration was a BAC1-11 twin-jet aircraft that has been converted into a surrogate UAV. In addition to controlling the BAC1-11 'remotely', an operator directed a package of simulated UAVs at a strategic level and carried out a simulated ground attack on a moving target.

An autonomy computer using agent-based reasoning software was responsible for the self-organising of the UAV package at a tactical level and the operation of communication systems, sensors and weapons. The trial is a world first in demonstrating such a complex system in flight which greatly reduces the workload of the human operator.

During the flight trial the BAC1-11 flew and operated as if it was unmanned, being directed from a command station designed for use in a fast jet. Throughout the demonstration, flown from Boscombe Down airfield in Wiltshire at the end of October, a flight crew was retained for safety monitoring and control during takeoff and landing. This enabled the flight to take place largely in uncontrolled airspace over South West England negating the need for special clearance or the use of segregated airspace.

Before flights began the entire UAV system was thoroughly tested in a QinetiQ simulation environment at Bedford. This enabled the flight crew and trials team to rehearse the first real sortie 'flying' from a 'virtual' Boscombe Down using all the software and hardware that was installed in the real aircraft. This approach has realised significant cost savings through the reduction in flying hours and associated support costs.

Andrew Sleigh, Group Managing Director of QinetiQ's Defence and Technology Sector, said: "This demonstration is a wonderful achievement for the team. The success is an important step in proving that complex autonomous decision-making technologies are ready to move from a simulated world to realistic flight conditions. Ultimately this work could lead to a single human operator controlling teams of highly autonomous unmanned vehicles to carry out complex missions while reducing the risk to manned aircraft."

QinetiQ's Tornado Integrated Avionics Research Aircraft (TIARA) is currently being equipped with a UAV command and control interface and this will allow further flight trials during which the package of real and simulated aircraft (including the BAC1-11) will be commanded by the fast jet pilot while in flight. This next series of trials is expected to take place in early 2007.

In addition to developing military UAV technologies QinetiQ is actively exploring the potential civil and commercial applications of UAVs. The ability to direct multiple autonomous unmanned aircraft could deliver benefit in a range of scenarios, including a coastguard rescue, a disaster relief operation or during environmental monitoring.

Ben White | alfa
Further information:
http://www.qinetiq.com/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>