Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perforating aircraft wings with minute holes could make for more efficient flying

14.01.2002


One way to make aeroplanes fly more efficiently is to drill millions of tiny holes in the leading edges of the wings. Like the dimples on a golf ball this has the effect of reducing drag. However, producing these holes on a manufacturing scale is not yet commercially feasible.

Researchers at Heriot-Watt University, funded by the Engineering and Physical Sciences Research Council, and the aerospace company BAE SYSTEMS, have carried out a series of fundamental studies on drilling such holes using laser beams. The results of the work are being assessed by BAE SYSTEMS to determine whether the airflow characteristics of holes produced in this way are suitable.

Dr Duncan Hand is a member of the research team. “It’s been known for a long time that arrays of millions of holes, 50 or 60 micrometres in diameter, on the leading edge of aircraft wings can improve the air flow characteristics around the wing,” he says. “But there’s been no cost-effective way of producing these holes accurately, quickly and cheaply – it is important to justify the increased manufacturing costs against any improvement in the aircraft’s efficiency.”



While conventional mechanical drilling techniques are insufficiently accurate and too slow for holes of this size and in these numbers, using lasers to drill the holes might be a feasible option. Here the energy of the laser melts or vaporises the metal, leaving a hole. By splitting the laser beam it would be possible to drill many holes simultaneously.

“If laser drilling is to be considered it’s necessary to know what sort of laser pulse is best, how much energy is needed, what are the most appropriate conditions – all these factors are important,” says Dr Hand.

The Heriot-Watt team has been examining two ways of laser drilling. One is using the laser in a ‘long pulse’ mode, where the pulse of laser energy lasts for around a millisecond. The other is a ‘short pulse’ mode, where the laser pulses are in the range of nanoseconds.

“For the short pulse mode you need many pulses to drill the hole, whereas for the longer pulse mode you only need a single pulse,” says Dr Hand. “While the shorter pulses produce holes which have more geometric uniformity, they take longer to drill. We also found that because the short pulses have a very high peak power, they tend to ionise the gases they come into contact with – both the air layer on the surface of the material and the vaporised metal.” This ionised gas, or plasma, can block a significant proportion of the laser energy.

The main issue with drilling with the longer pulse lasers is that the holes are less uniform. “There is a lot of interest in the variability of geometry of the holes,” says Dr Hand. “We have found that you can control certain parameters in the process to minimise the variability between holes, but there will always be an intrinsic variability. The main question is whether this variability is acceptable. That is something which is now being assessed.”



Jane Reck | alphagalileo

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>