Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perforating aircraft wings with minute holes could make for more efficient flying

14.01.2002


One way to make aeroplanes fly more efficiently is to drill millions of tiny holes in the leading edges of the wings. Like the dimples on a golf ball this has the effect of reducing drag. However, producing these holes on a manufacturing scale is not yet commercially feasible.

Researchers at Heriot-Watt University, funded by the Engineering and Physical Sciences Research Council, and the aerospace company BAE SYSTEMS, have carried out a series of fundamental studies on drilling such holes using laser beams. The results of the work are being assessed by BAE SYSTEMS to determine whether the airflow characteristics of holes produced in this way are suitable.

Dr Duncan Hand is a member of the research team. “It’s been known for a long time that arrays of millions of holes, 50 or 60 micrometres in diameter, on the leading edge of aircraft wings can improve the air flow characteristics around the wing,” he says. “But there’s been no cost-effective way of producing these holes accurately, quickly and cheaply – it is important to justify the increased manufacturing costs against any improvement in the aircraft’s efficiency.”



While conventional mechanical drilling techniques are insufficiently accurate and too slow for holes of this size and in these numbers, using lasers to drill the holes might be a feasible option. Here the energy of the laser melts or vaporises the metal, leaving a hole. By splitting the laser beam it would be possible to drill many holes simultaneously.

“If laser drilling is to be considered it’s necessary to know what sort of laser pulse is best, how much energy is needed, what are the most appropriate conditions – all these factors are important,” says Dr Hand.

The Heriot-Watt team has been examining two ways of laser drilling. One is using the laser in a ‘long pulse’ mode, where the pulse of laser energy lasts for around a millisecond. The other is a ‘short pulse’ mode, where the laser pulses are in the range of nanoseconds.

“For the short pulse mode you need many pulses to drill the hole, whereas for the longer pulse mode you only need a single pulse,” says Dr Hand. “While the shorter pulses produce holes which have more geometric uniformity, they take longer to drill. We also found that because the short pulses have a very high peak power, they tend to ionise the gases they come into contact with – both the air layer on the surface of the material and the vaporised metal.” This ionised gas, or plasma, can block a significant proportion of the laser energy.

The main issue with drilling with the longer pulse lasers is that the holes are less uniform. “There is a lot of interest in the variability of geometry of the holes,” says Dr Hand. “We have found that you can control certain parameters in the process to minimise the variability between holes, but there will always be an intrinsic variability. The main question is whether this variability is acceptable. That is something which is now being assessed.”



Jane Reck | alphagalileo

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>