# Forum for Science, Industry and Business

Search our Site:

## Better Order for Airline Routes - Solutions to the Tail Assignment Problem

21.09.2005

A single airline can have thousands of planes taking off and landing all over the world every day. Since every minute is expensive and security is a top priority, somebody has to keep them in line. Chalmers University of Technology in Sweden has come up with a solution to the problem.

Mattias Grönkvist, author of a dissertation on the subject, describes the difficulty in concrete terms:

“If ten plans have just landed at an airport, you have to have a schedule that says in what order the planes should take off­-and where they are heading. This is determined by numerous conditions. For example, not all types of airplanes are allowed to land at all airports, and the planes have to have sufficiently large fuel tanks to complete each trip. Everything has to be done as efficiently and economically as possible, with sufficient safety.”

The problem is usually called the Tail Assignment Problem­-named after the planes’ so-called tail numbers. In other words, it’s a matter of determining what sequence of flights­routes­-each individual airplane is going to fly. The routes must be constructed in such a way as to provide for sufficient maintenance of every plane and to fulfill a number of regulations. Sometimes it is moreover desirable for the routes created to be optimized in some particular way, such as being minimally affected by delays.

For relatively large airlines the Tail Assignment Problem is highly complex. For instance, from an airline’s hub airport there are an enormous number of routes to choose among. Computer programs are deployed to get a handle on all the different conditions. These programs are based on mathematical models.

One of the aims of Mattias Grönkvist’s work was to come to grips with a couple of the drawbacks of the models most commonly used by airlines today: “Often, not all necessary regulations are addressed, which means that the routes created are difficult to use without extra manual intervention.” “Most models can only be optimized in regard to a certain predetermined criterion.” “Traditional models are often used for only a certain type of planning scenario.”

Mattias Grönkvist has combined two ways of solving these problems, on the one hand, using strictly mathematical methods and, on the other, using methods from computer science that have to do with conditional programming. The idea has been mooted before but can now be executed in practice, partly thanks to the explosive growth in the power of computers in recent years.

“My solution is more generally applicable than its predecessors, and it is designed to be used in a greater part of the planning process. I believe this type of combined methodology will be further developed and become more and more common in the future,” says Mattias Grönkvist.

His method has already been put to use in a commercial product that is used by two airlines. The work was carried out as part of a project together with Carmen Systems AB, which develops and markets programs for solving various logistical and planning problems. In the aviation industry the company has previously worked mostly with timetabling of personnel.

Jorun Fahle | alfa
Further information:
http://www.chalmers.se

### More articles from Transportation and Logistics:

Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

### Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

### Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

### Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

### Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

### Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige