Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft researcher develops design-rules for transport networks

25.09.2002


Large changes unnecessary for multimodal transport



Multimodal transport is not in need of redesigned networks, rather of well designed ones. This is one of the conclusions from the PhD research of Rob van Nes, who will defend his thesis on Wednesday 25 September at TU Delft. “A highway with too many on and off ramps actually becomes a main road. This might be handy, but it is not effective.” Van Nes, who carried out his research at TRAIL research school, laid the theoretical foundation for something which many people already suspected.

Multimodal transport is often seen as an interesting possibility to solve the current traffic problems such as traffic jams, unreachable areas and negative environmental effects. Combining the use of, for example, cars, trains and buses on certain routes, could emphasise the strengths and diminish the weaknesses of the network. Van Nes: “Multimodal transport is very useful, but the important question is actually: what exactly does an effective multimodal network look like? Is a different from the networks that we have at the moment, or are the connections between the networks more important?” According to Van Nes, two points are of great importance for an effective multimodal network: hierarchy and concentration in space.


Using mathematical models, Van Nes showed that multimodal networks are pointless unless one sticks to the hierarchy of the network. Van Nes: “In the hierarchy, a highway stands above a main road. The highway is for longer distances at higher speeds, a main road is for shorter distances and lower speeds.” If one does not maintain a clear separation, the result is an inefficient network. Van Nes: “A highway with many on and off ramps becomes a main road. It gets used for shorter distances, it becomes busier and the speed decreases.”

The concentration in space is also very important. Van Nes uses calculations to show that a public transport network can only work if there is a demand for transport. “If in a certain part of the city, there is no clear demand for transport, it is of little use to build higher level networks (fast tram/subway) alongside a the bus network in that area,” says Van Nes, “It is better to choose one of the two. This saves space, and especially money.” Van Nes has laid theoretical foundation for something that many people already suspected. Van Nes: “We can now provide proper arguments as to why we must build networks systematically, and on what points we should concentrate when trying to stimulate multimodal transport.”

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Transportation and Logistics:

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>