Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Delft researcher develops design-rules for transport networks


Large changes unnecessary for multimodal transport

Multimodal transport is not in need of redesigned networks, rather of well designed ones. This is one of the conclusions from the PhD research of Rob van Nes, who will defend his thesis on Wednesday 25 September at TU Delft. “A highway with too many on and off ramps actually becomes a main road. This might be handy, but it is not effective.” Van Nes, who carried out his research at TRAIL research school, laid the theoretical foundation for something which many people already suspected.

Multimodal transport is often seen as an interesting possibility to solve the current traffic problems such as traffic jams, unreachable areas and negative environmental effects. Combining the use of, for example, cars, trains and buses on certain routes, could emphasise the strengths and diminish the weaknesses of the network. Van Nes: “Multimodal transport is very useful, but the important question is actually: what exactly does an effective multimodal network look like? Is a different from the networks that we have at the moment, or are the connections between the networks more important?” According to Van Nes, two points are of great importance for an effective multimodal network: hierarchy and concentration in space.

Using mathematical models, Van Nes showed that multimodal networks are pointless unless one sticks to the hierarchy of the network. Van Nes: “In the hierarchy, a highway stands above a main road. The highway is for longer distances at higher speeds, a main road is for shorter distances and lower speeds.” If one does not maintain a clear separation, the result is an inefficient network. Van Nes: “A highway with many on and off ramps becomes a main road. It gets used for shorter distances, it becomes busier and the speed decreases.”

The concentration in space is also very important. Van Nes uses calculations to show that a public transport network can only work if there is a demand for transport. “If in a certain part of the city, there is no clear demand for transport, it is of little use to build higher level networks (fast tram/subway) alongside a the bus network in that area,” says Van Nes, “It is better to choose one of the two. This saves space, and especially money.” Van Nes has laid theoretical foundation for something that many people already suspected. Van Nes: “We can now provide proper arguments as to why we must build networks systematically, and on what points we should concentrate when trying to stimulate multimodal transport.”

Maarten van der Sanden | alfa
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>