Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft researcher develops design-rules for transport networks

25.09.2002


Large changes unnecessary for multimodal transport



Multimodal transport is not in need of redesigned networks, rather of well designed ones. This is one of the conclusions from the PhD research of Rob van Nes, who will defend his thesis on Wednesday 25 September at TU Delft. “A highway with too many on and off ramps actually becomes a main road. This might be handy, but it is not effective.” Van Nes, who carried out his research at TRAIL research school, laid the theoretical foundation for something which many people already suspected.

Multimodal transport is often seen as an interesting possibility to solve the current traffic problems such as traffic jams, unreachable areas and negative environmental effects. Combining the use of, for example, cars, trains and buses on certain routes, could emphasise the strengths and diminish the weaknesses of the network. Van Nes: “Multimodal transport is very useful, but the important question is actually: what exactly does an effective multimodal network look like? Is a different from the networks that we have at the moment, or are the connections between the networks more important?” According to Van Nes, two points are of great importance for an effective multimodal network: hierarchy and concentration in space.


Using mathematical models, Van Nes showed that multimodal networks are pointless unless one sticks to the hierarchy of the network. Van Nes: “In the hierarchy, a highway stands above a main road. The highway is for longer distances at higher speeds, a main road is for shorter distances and lower speeds.” If one does not maintain a clear separation, the result is an inefficient network. Van Nes: “A highway with many on and off ramps becomes a main road. It gets used for shorter distances, it becomes busier and the speed decreases.”

The concentration in space is also very important. Van Nes uses calculations to show that a public transport network can only work if there is a demand for transport. “If in a certain part of the city, there is no clear demand for transport, it is of little use to build higher level networks (fast tram/subway) alongside a the bus network in that area,” says Van Nes, “It is better to choose one of the two. This saves space, and especially money.” Van Nes has laid theoretical foundation for something that many people already suspected. Van Nes: “We can now provide proper arguments as to why we must build networks systematically, and on what points we should concentrate when trying to stimulate multimodal transport.”

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>