Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method uses 'Bluetooth' to track travel time for vehicles, pedestrians

29.05.2008
Engineers have created a method that uses pervasive Bluetooth signals from cell phones and other wireless devices to constantly update how long it takes vehicles and pedestrians to travel from one point to another.

The method envisioned by engineers at the Indiana Department of Transportation represents a potentially low-cost leap in technology to provide information for everything from the speed of the morning commute to the sluggishness of airport security lines.

"This is incredibly valuable information that could be used for many purposes, including better traffic signal timing and management of construction work zones to reduce congestion, as well as real-time traffic information for motorists," said Darcy Bullock, a professor of civil engineering at Purdue University. "Now we have a way to measure how slow traffic is on a given stretch of road or how long it's taking people to get through airport security at a given concourse and time of day."

Bullock is developing the method with Jason S. Wasson and James R. Sturdevant, engineers from the Indiana Department of Transportation.

"We came up with the idea at INDOT and developed the prototype this year from off-the-shelf hardware," Wasson said.

The method picks up the identifying "addresses" from Bluetooth devices in consumer electronics. Because each device has its own distinct digital signature, its travel time can be tracked by detectors installed at intersections or along highways and other locations.

Travelers could access the travel-time information using the same portable electronic devices that make the system possible.

"Information is a commodity people are aggressively seeking, and this method promises to cost effectively provide information that has never been widely available to travelers," Bullock said.

Research findings will be detailed in a paper appearing in the June issue of the ITE Journal, published by the Institute of Transportation Engineers. The paper was written by Wasson, Sturdevant and Bullock.

Bluetooth technology connects and exchanges information for cell phone hands-free headsets, wireless keyboards, Internet access for personal digital assistants, and wireless networks for laptops and personal computers. The new travel-time estimation procedures detect and record "media access control," or MAC identification signals, every time a Bluetooth device passes a detector.

"It gives you quantitative 24-hour feedback on traffic flow, information we can use for design and operation decisions," Wasson said. "Agencies need quantitative data so they can make informed decisions about how to allocate resources and how well design changes are working."

Data from such a system would provide not only information about short-term factors such as congestion from construction work zones, but also long-term trends requiring design changes, Sturdevant said.

The researchers tested the method on sections of Interstate 65, Interstate 465 and roads in and around Indianapolis, tracking 1.2 percent of the average daily traffic on specific routes.

"That's important because it means basically every hundredth vehicle is tracked, so the travel-time information is accurate and updated," Bullock said. "With improved antenna mounting we expect to do even better."

Pedestrian walking speeds also could be tracked to learn how long it takes people to negotiate airports and other facilities.

Future work may involve expanding the research to additional sections of roadways. The researchers have filed a patent on the method, and the basic technology is available commercially to create the tracking system, Bullock said.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Darcy Bullock, (765) 494-2226, darcy@purdue.edu
Jason S. Wasson, (317) 899-8601, jwasson@indot.in.gov
James R. Sturdevant, (317) 234-4866, jsturdevant@indot.in.gov
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>