Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart aircraft wings and new lightweight construction materials

08.04.2008
At the JEC Composites Show 2008 to be held in Paris from April 1 to 3, Fraunhofer researchers will be exhibiting an aircraft wing that immediately detects any material damage. Another showcased development is a novel fiber-composite material with a fiber content that can extend to 50 or 60 percent by volume.

Nowadays it’s easy to hop on a plane and fly to London or spend a romantic weekend in Paris for just a few euros – if the volume of air traffic is increasing, one of the main reasons is the low tariffs. From an environmental point of view, however, this frequent and spontaneous use of air travel is a controversial issue.

A European consortium consisting of 86 industrial firms and research partners from 16 nations has therefore formed the “Clean Sky” Joint Technology Initiative (JTI) with the aim of minimizing the amount of air pollution caused by aircraft. Through a number of research and development projects to be conducted over the next seven years, this initiative intends to help to reduce CO2 emissions by 50 percent, NOx emissions by 80 percent, and cut perceived noise by half. The researchers also intend to develop more environmentally compatible methods, processes and materials for the design, manufacture, operation and end-of-life disposal of aircraft. Six Fraunhofer Institutes are currently members of the consortium, and the Fraunhofer-Gesellschaft is one of the twelve organizations that make up the program’s Governing Board.

At the JEC Composites Show 2008 to be held in Paris from April 1 to 3, scientists from the Fraunhofer Institute for Structural Durability and System Reliability will be presenting a demonstrator of a structural health monitoring system based on the use of piezoelectric materials (Stand U74). “We will be demonstrating an aircraft wing made of a fiber composite material incorporating a number of piezoelectric sensors and actuators,” says Dr. Ursula Eul, strategic manager of Fraunhofer LBF. “This system enables damage to the material, caused by impact for instance, to be detected at a very early stage – practically as it arises.” Piezoelectric actuators in the structure emit acoustic signals which generate a specific pattern of structure-borne noise on the wing. The resulting vibrations are recorded by piezoelectric sensors. Any incipient damage to the material, such as the first signs of delamination, causes changes in the wave pattern of the structure-borne noise. A major challenge here is that the sensors integrated in the structure must not have any negative effect on the fatigue strength of the component or, worse still, on the normal performance of the wing. Reliable structural health monitoring systems that can operate continuously without affecting structural durability are one of the thematic areas of the Clean Sky Joint Technology Initiative.

Another of the exhibits to be featured at the JEC show stems from research at the Fraunhofer Institute for Chemical Technology ICT: A novel high-performance fiber composite material that demonstrates excellent crash behavior in addition to possessing high strength and stiffness, and is therefore particularly suitable for use in the automotive and aerospace industries.

Fiber-reinforced plastics generally consist of a matrix material into which reinforcement fibers – commonly glass or carbon – are embedded. “The most important requirement when producing high-performance fiber composite materials is that the fibers should be laid down in the direction subject to the highest stresses and that they should be adequately wetted by the matrix material. Our process enables us to achieve a high fiber content of between 50 and 60 percent by volume – a far higher ratio than that obtainable using other thermoplastic techniques,” declares Jan Kuppinger of the ICT. The traditional method of producing thermoplastic fiber composites involves melting a plastic granulate to form the matrix and then mixing the viscous material with the selected type of fiber. “By contrast, in our process we start with the basic constituents of the polymer material, which have the same fluid properties as water and therefore wet the individual fibers much more efficiently. The ensuing polymerization process takes place very rapidly inside the tool,” explains Kuppinger. An added advantage is that polymerization occurs at a maximum temperature of 160°C, which is well below the melting point of the final polymerized thermoplastic. This considerably improves the energy efficiency of the process.

This innovative process for the manufacture of new high-performance fiber composites was developed by the Karlsruhe-based innovation cluster “KITe HyLite – Technologies for Lightweight Vehicle Construction”. The key research focus of this innovation cluster is technologies for function-integrated hybrid lightweight construction. Emphasis is placed on a holistic approach to fiber composite technologies, encompassing everything from basic methods and the design of new materials to manufacturing technologies.

Dr. phil. nat. Ursula Eul | Fraunhofer Gesellschaft
Further information:
http://www.fraunhofer.de

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>