Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart aircraft wings and new lightweight construction materials

08.04.2008
At the JEC Composites Show 2008 to be held in Paris from April 1 to 3, Fraunhofer researchers will be exhibiting an aircraft wing that immediately detects any material damage. Another showcased development is a novel fiber-composite material with a fiber content that can extend to 50 or 60 percent by volume.

Nowadays it’s easy to hop on a plane and fly to London or spend a romantic weekend in Paris for just a few euros – if the volume of air traffic is increasing, one of the main reasons is the low tariffs. From an environmental point of view, however, this frequent and spontaneous use of air travel is a controversial issue.

A European consortium consisting of 86 industrial firms and research partners from 16 nations has therefore formed the “Clean Sky” Joint Technology Initiative (JTI) with the aim of minimizing the amount of air pollution caused by aircraft. Through a number of research and development projects to be conducted over the next seven years, this initiative intends to help to reduce CO2 emissions by 50 percent, NOx emissions by 80 percent, and cut perceived noise by half. The researchers also intend to develop more environmentally compatible methods, processes and materials for the design, manufacture, operation and end-of-life disposal of aircraft. Six Fraunhofer Institutes are currently members of the consortium, and the Fraunhofer-Gesellschaft is one of the twelve organizations that make up the program’s Governing Board.

At the JEC Composites Show 2008 to be held in Paris from April 1 to 3, scientists from the Fraunhofer Institute for Structural Durability and System Reliability will be presenting a demonstrator of a structural health monitoring system based on the use of piezoelectric materials (Stand U74). “We will be demonstrating an aircraft wing made of a fiber composite material incorporating a number of piezoelectric sensors and actuators,” says Dr. Ursula Eul, strategic manager of Fraunhofer LBF. “This system enables damage to the material, caused by impact for instance, to be detected at a very early stage – practically as it arises.” Piezoelectric actuators in the structure emit acoustic signals which generate a specific pattern of structure-borne noise on the wing. The resulting vibrations are recorded by piezoelectric sensors. Any incipient damage to the material, such as the first signs of delamination, causes changes in the wave pattern of the structure-borne noise. A major challenge here is that the sensors integrated in the structure must not have any negative effect on the fatigue strength of the component or, worse still, on the normal performance of the wing. Reliable structural health monitoring systems that can operate continuously without affecting structural durability are one of the thematic areas of the Clean Sky Joint Technology Initiative.

Another of the exhibits to be featured at the JEC show stems from research at the Fraunhofer Institute for Chemical Technology ICT: A novel high-performance fiber composite material that demonstrates excellent crash behavior in addition to possessing high strength and stiffness, and is therefore particularly suitable for use in the automotive and aerospace industries.

Fiber-reinforced plastics generally consist of a matrix material into which reinforcement fibers – commonly glass or carbon – are embedded. “The most important requirement when producing high-performance fiber composite materials is that the fibers should be laid down in the direction subject to the highest stresses and that they should be adequately wetted by the matrix material. Our process enables us to achieve a high fiber content of between 50 and 60 percent by volume – a far higher ratio than that obtainable using other thermoplastic techniques,” declares Jan Kuppinger of the ICT. The traditional method of producing thermoplastic fiber composites involves melting a plastic granulate to form the matrix and then mixing the viscous material with the selected type of fiber. “By contrast, in our process we start with the basic constituents of the polymer material, which have the same fluid properties as water and therefore wet the individual fibers much more efficiently. The ensuing polymerization process takes place very rapidly inside the tool,” explains Kuppinger. An added advantage is that polymerization occurs at a maximum temperature of 160°C, which is well below the melting point of the final polymerized thermoplastic. This considerably improves the energy efficiency of the process.

This innovative process for the manufacture of new high-performance fiber composites was developed by the Karlsruhe-based innovation cluster “KITe HyLite – Technologies for Lightweight Vehicle Construction”. The key research focus of this innovation cluster is technologies for function-integrated hybrid lightweight construction. Emphasis is placed on a holistic approach to fiber composite technologies, encompassing everything from basic methods and the design of new materials to manufacturing technologies.

Dr. phil. nat. Ursula Eul | Fraunhofer Gesellschaft
Further information:
http://www.fraunhofer.de

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>