Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crash safety in rail vehicles

03.03.2008
A group of structural engineers at Vienna University of Technology (TU) are working on simulating the behaviour of weld seams under crash loading.

Particular emphasis is being placed on rail vehicles where, on the one hand, improved crash safety is being demanded and, on the other hand, only a limited number of real crash tests can be performed due to the high costs involved. Simulation models are to allow an improved assessment of the failure of welds in the future.

At present, crash tests represent the state of the art not only in the automobile industry but also in the rail vehicle sector. In the course of a cooperative project with Siemens Transportation Systems TU researchers investigated the strength of weld seams in rail vehicles under crash loading as part of a research project funded by the city of Vienna (ZIT). “During collisions not only individual structural components but also the joints between them are exposed to enormous loads. Spot welds play an important role in the crash behaviour of motor vehicles, whereas rail vehicles tend to employ continuous weld seams. Both can be critical in the event of a collision”, notes Helmut Böhm, Head of the Institute of Lightweight Design and Structural Biomechanics of Vienna University of Technology (TU).

The reason why welded joints may be subject to failure lies in the thermal conditions they are subjected to during welding. The metal is heated and molten, which can significantly modify its properties. With the aid of computer simulations professor Böhm and project assistant Christian Grohs studied the inhomogeneous and heat affected material involved in weld seams. “The objective is to enable the structure to absorb as much kinetic energy as possible during a crash. It is constructed in such a way that it can be severely deformed, e.g. by developing patterns of folds. This reduces the risk of injury for passengers”, says Helmut Böhm. Christian Grohs adds: “An extensive experimental test programme, which forms the basis for numerical analysis, was defined and carried out in cooperation with the Institute of Materials Sciences and Technology. We can then recheck the test results and construct better models using this data. The test structure was defined in such a way that the weld seams are located at the most unfavourable positions with the aim of inducing them to fail during the test. The models, in turn, serve to improve the design of rail vehicles”.

A new standard on the collision safety of rail vehicles is to be introduced in 2008. Since crash tests of rail vehicles are very expensive, simulations play a major role in verifying their crash behaviour. Such work must demonstrate that gross deformations of rail vehicles are restricted to so-called crash zones which are situated in regions where there are no people. Dr. Seitzberger, crash expert at Siemens Transportation Systems, states: “An intensive basic research-oriented debate on the issue of the passive safety must be regarded as essential for successfully carrying out future projects. The present cooperation represents a significant contribution to the continued development of know-how and competence in this field and will contribute to enhancing the safety of modern rail vehicles”.

Daniela Hallegger | alfa
Further information:
http://www.tuwien.ac.at/pr

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>