Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory on Wheels

18.10.2011
Electric and hybrid vehicles will be conquering the cities: cars, bicycles, buses and trains. This is why new ideas are in demand for individual and public transportation. In “Fraunhofer’s System Research for Electromobility” researchers are coming up with solutions for tomorrow’s mobility.

The AutoTram® is as long as a streetcar and as maneuverable as a bus. It doesn’t need rails or overhead lines because the “BusBahn” rolls on rubber tires and simply follows white lines on the street. Another plus is the fact that people waiting at stops will not have to smell exhaust fumes in the future when a bus stops and starts again because tomorrow’s means of transport will be using electricity, hydrogen or a combination of various regenerative drives.


The electrically-driven AutoTram® (© Ingo Daute/Fraunhofer)

In “Fraunhofer’s System Research for Electromobility” the AutoTram® was used as an experimental platform. It was a component of the research collaboration of more than 30 Fraunhofer institutes. Dr. Ulrich Potthoff is the department head at the Fraunhofer Institute for Transportation and Infrastructure Systems IVI in Dresden, Germany, and this is how he sees it: “We provide functioning solutions for advancing electromobility in Germany. We use these two demonstrator vehicles – AutoTram® and a passenger car – to demonstrate that the recently developed components function interactively.” The German Federal Ministry of Education and Research has promoted this project with 34.5 million euros from its Economic Policy Program II for a period of two years while Economic Policy Program I invested another 14 million euros. The research topics in this group project were vehicle designs, power generation/distribution/conversion, energy storage engineering, technical system integration, reliability, testing and launch as well as social issues.

The first designs of the AutoTram® were built a couple of years ago at the Fraunhofer Institute for Transportation and Infrastructure Systems. Dr. Matthias Klingner has been the director of the institute for six years: “This vehicle provided the ideal platform for our colleagues and us to test new developments not just as a simulation, but also in action.” New modules installed in the vehicle such as an energy storage device, double layer capacitors and clutches can show what they do in real-life practice. Potthoff adds, “We have set ourselves the task of testing all of the components interactively. We can use simulations to accelerate developments, but we can only be sure that it functions if the components and systems have stood up to hands-on testing. We fit the modules into the overall system of the AutoTram® at the Fraunhofer IVI Institute, and then we configure the interfaces.” For the scientist, the key is getting several institutes to collaborate: “It was fantastic to work with our colleagues because together we are more than the sum of the individual institutes. A case in point is the lithium-ion battery system we built into electrical vehicles last week. Eleven Fraunhofer institutes each added their specific expertise to the project.” Incidentally, these packs can also be used for passenger cars.

The battery system consists of a whole series of cells and they do not always discharge at the same speed. The entire battery can suffer if individual ones fail or no longer provide the planned output. This is the reason why these packs are controlled by a higher-level energy management system. Dr. Matthias Vetter is from the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany. As project director for coordinating the project, he describes the basic principle: “The electronic system measures the current, single-cell voltage and temperature in fractions of a second for calculating the charging and aging state. This is how we can find out whether each cell is about to overcharge, undercharge, overheat or age prematurely.” Unlike cars that park an average of 23 hours a day, buses and trains are on the road the whole day so there isn’t much time to charge batteries. A potential solution is fast-charging stations at bus stops in combination with dual storage units in the vehicle itself.

The tram taps the quantity of energy it needs to make it to the next stop or the stop after that in only 20-30 seconds During this time passengers are getting in and out. Barz is a scientist at the Fraunhofer Institute for Transportation and Infrastructure Systems. As he puts it: “We are working on the modules needed such as the energy storage device, high-performance converters and contact systems for transmitting the current. In contrast to batteries, our supercapacitors have a high level of power density and they make sure that the charge can be stored quickly.” When the tram stops, the silvery current collector on the roof moves upward and docks onto the source of electricity. Then small but strong electromagnets turn on. They generate enough power to press the contacts together enormously. This is where the resistance (and therefore heat development) is lower when high levels of energy of more than 1,000 amperes and 700 volts are transmitted. But where does the needed electricity come from? There is an energy storage device at the tram stop, and it slowly collects small amounts of electricity to avoid load peaks for the power generator wherever possible. As Barz says: “We adapt the number of charging stations to the specific route. The number of stations needed depends on the shape of the route, whether it goes up or down and how long it takes to the next tram stop.” In any event, there is a diesel engine for emergencies – in other words, if the next current charging station is too far away.

Potthoff vividly elucidates the principles behind super capacitors: “Batteries take a certain amount of time to charge. You can compare that with a large bathtub and a small supply. On the other hand, capacitors absorb the charge very quickly like a small bathtub and a large supply. Unfortunately, they can only store a small amount of energy.” The engineers are working at linking the battery system and capacitors in urban transportation for this application. Potthoff continues: “We are coming up with dual storage units and also testing combinations with other storage models and fuel cells.” His colleagues at the Fraunhofer Institute for Integrated Systems and Device Technology IISB are contributing new developments in high-performance electronic components such as a DC converter that adapts the voltage level. These specially built DC/DC converters are needed to couple the double-layer capacitors with the drive train. However, the materials that stand up to high power conversion are also of pivotal importance. The surface of these contacts has to be very sturdy and resistant to wear. This is where the researchers from the Fraunhofer Institute for Material and Beam Technology IWS come in – they have developed the materials needed and the way they are processed.

These four Fraunhofer institutes – LBF, ISC and IWM, along with the Fraunhofer Institute for Transportation and Infrastructure Systems – have contributed their experience to developing a new type of magnetorheological motor generator clutch. This electrically switchable clutch functions in the following fashion: an integrated fluid changes its consistency from liquid to solid under the influence of a magnetic field. That means that the coupling process can be quickly and precisely controlled. Dr. Matthias Klingner drives home the message: “Air conditioning is important to us, too. It’s not just a question of passengers wanting a comfortable environment. The electrical motors, high-performance electronics and converters are relatively temperature-sensitive. This is why we have come up with elaborate systems in our research project where we transform the waste heat from the electronic components into available heat for the passengers.”

And the research beat goes on, as Klingner explains the development in AutoTram® II: “This time we are working with a small bus manufacturer, some research partners at the Dresden Technical University, some Saxon engineering companies and the Dresden public transport company to build and test a vehicle that actually reminds you more of a run-of-the-mill bus.” All of this is being promoted by the German Federal Ministry of Education and Research in an ‘innovative regional growth core.’ We would like to put our expertise on the road to try out drive designs, highly precise multiple-axle steering and a whole lot more in actual traffic. This vehicle will be 30 m long, have several joints and be licensed for street driving.’

Dr.-Ing. Matthias Klingner | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/21/laboratory-on-wheels-autotram.jsp

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>