Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harnessing new technology to keep older people behind the wheel for longer

12.09.2008
A new study has highlighted the key role technology could play in extending the age at which people can drive safely on our roads.

With input from older people, researchers from the University of the West of England, Bristol, have identified ideas for innovative in-car information systems which, if developed, could help compensate for the reduction in reaction time that affects many drivers as they get older.

The research could give older people the confidence to continue driving for as long as their capabilities allow. Crucially, because the systems would not take control of the car away from the driver, they would also enable users to retain their sense of independence.

Undertaken as part of the SPARC (Strategic Promotion of Ageing Research Capacity) initiative, the study will be discussed at this year’s BA Festival of Science in Liverpool on Thursday 11th September. SPARC is supported by the Engineering and Physical Sciences Research Council (EPSRC) and the Biotechnology and Biological Sciences Research Council (BBSRC).

Specific ideas generated include:

•A system that unobtrusively displays road sign information through a head-up display on the windscreen. This is a see-through display that shows information without impeding the user’s view. Harnessing Global Positioning System (GPS) technology, this would track a car’s position and identify approaching signs. Exactly the same information contained in the signs would then appear on the windscreen at the right moment. The driver would therefore not have to keep scouring the road side for information.

•A system providing the driver with audible feedback on their current speed, again harnessing GPS technology. For example, one short, non-distracting bleep could indicate the car is approaching the local speed limit; a longer bleep could indicate the speed limit has been reached. The driver would therefore not have to look at the dashboard so often.

The systems have the potential to minimise the amount of time drivers divert their attention from the road ahead, cutting the chance of an accident.

These ideas emerged as a direct result of a groundbreaking survey of older people’s driving-related needs and attitudes undertaken as part of the study. This was the first-ever wholly qualitative* study to focus specifically on this topic. Over a six-month period, focus groups and interviews were conducted with a sample of 57 people aged between 65 and 85. The sample included a balance of men and women, those living in urban and rural areas, and people who were still driving as well as those who had given up.

A key finding was the important psychological role that driving plays in older people’s lives, in contributing to feelings of independence and freedom, and their quality of life.

Those surveyed expressed strong reservations about in-car technologies now under development which aim to take an element of control away from the driver (e.g. systems automatically limiting car speeds or regulating the distance between a car and the vehicle in front). By constraining feelings of independence, such technologies could discourage older people from driving even though they are still physically capable.

But a strong preference was expressed for technologies which simply improve information provision and aid decision-making, such as the GPS-based systems described above.

“Our research highlights issues that have been overlooked by car designers and those advising older people on lifestyles”, says Dr Charles Musselwhite, who led the study. “The current emphasis on developing technologies which take over part of the driving task may actually end up deterring older drivers. By contrast, better in-car information systems could help them drive safely and ensure they want to keep driving.”

Dr Musselwhite and his team are now planning to work with technical experts to produce a prototype speed information system and in-car road sign information display system.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

Further reports about: BBSRC EPSRC GPS Physical Sciences SPARC in-car information systems

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>