Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can the Zebrafish Help US to Search for New Pain Drugs?

04.09.2013
Neuropathic pain is caused by injury of the central or peripheral nervous system. Neuropathic pain is difficult to treat because rarely responds to opiates.

Studying neuropathic pain in humans has major ethical and experimental limitations. The use of alternate mammalian animal models has been the solution for many years. For both human and animal studies scientists had to rely frequently on behavioral tests that may not directly reflect the experience the animal is going through.

Thus, this may be one of the reasons because our ability to treat pain symptoms still relies on a small number of drugs. This suggests that the use of other model systems may help to discovery new compounds with potential analgesic activity.

A new published study in Journal of Cellular Physiology by a team led by Dr. Antonio Giordano and Dr. Gianfranco Bellipanni of Sbarro Institute for Cancer Research and Molecular Medicine and Temple University (Philadelphia, USA) adds a new prospective on the research on pain perception. They used larvae of the small vertebrate zebrafish to show that at the molecular level they respond to stimuli that induce inflammation and axons degenerations similarly to mammals.

“We found the highest temperature zebrafish larvae could survive and exposed them for only 5 seconds, the results where similar to human severe skin burns. “ Dr. Giordano said. “ Then we went to see if the panel of genes, activated by pain in humans, was activated also in the fish. Interestingly, they were activated at the right place and time”.

We asked Dr. Gianfranco Bellipanni to explain how this research could have implications for humans: “to understand better the mechanism of neuropathic pain and to discovery new drugs first we need an animal model that is easy and economic to keep, that shows a high degree of similarity in pain perception and response with mammals and is especially able to offer many technical tools for conducting studies.

Zebrafish matches all these characteristics” he said. “ Now we are creating transgenic zebrafish that became fluorescent in response to painful stimulations. These transgenic fish can be used for in vivo studies. At first we will use these transgenic fish to characterize better the cellular and molecular mechanisms of pain, but our final goal, if we will find the appropriate funding, is to use them for screening for chemicals with potential analgesic activity”.

Other authors of the study include Dr. Valentina Malafoglia and William Raffaeli both at ISAL-Foundation, Institute for Research on Pain, Dr. Marco Colasanti at University of Roma3 and Dr. Darius Balciunas at Temple University.

Dr. Antonio Giordano is Director and Founder of Sbarro Health Research Organization at Philadelphia, PA (www.shro.org) and Professor of Pathology and Oncology at University of Siena, Italy.

Barbara Colombo | Newswise
Further information:
http://www.shro.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>