Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One worm, two mouths - A devious evolutionary path between genetics and environment

07.11.2013
Depending on the environment in which the worm grows, the larva of the roundworm Pristionchus pacificus develops into either a wide-mouthed predator or a narrow-mouthed bacteria eater.

A team of researchers at the Max Planck Institute for Evolutionary Biology in Tübingen, Germany, headed by Ralf J. Sommer have now discovered a developmental biological switch that determines the worm’s mouth form. According to this, the scientists are now able to explain how organisms adapt to different surrounding conditions.


The roundworm Pristionchus pacificus with a narrow mouth. The worm mainly uses it for grazing on bacteria.

© MPI f. Developmental Biology


Pristionchus pacificus with a short wide mouth is able to carry out predatory attacks.

Erik Ragsdale, Max Planck Institute for Developmental Biology

When it comes to survival, flexibility is a trump card. This principle also applies to the microscopic roundworm Pristionchus pacificus, which is being researched by scientists at the Max Planck Institute for Developmental Biology in a study headed by Ralf Sommer. Depending on the environment in which Pristionchus grows, it develops either a short wide mouth or a long narrow one. The wide-mouthed variant, which has a single, characteristic tooth, is suitable for carrying out predatory attacks. The narrow version, in contrast, is mainly used for grazing on bacterial food sources.

The developmental path taken by a Pristionchus larva is not decided by its genes but by the environment. When the animals were starved or when too many worms crowded the Petri dish, the researchers observed the increased development of the wide-mouthed variant.

Erik Ragsdale, Manuela Müller, Christian Rödelsperger and Ralf Sommer have now discovered a crucial interface between the worm’s environment and its developmental genes. The Tübingen-based scientists found a gene which functions like a switch and selects the suitable variant from the two possible mouth forms.

The discovery of this gene was the crowning success of a genetic experiment, to which roundworms are particularly suited due to their short generation time. Ragsdale and Müller discovered mutated worm lines which only produce worms with narrow mouths, irrespective of the environmental conditions, and in which the same gene, eud-1, is inactivated. “We were able to show that a gene that we found in a genetic experiment under laboratory conditions controls an ecologically significant characteristic,” comments Max Planck Director Sommer, explaining the special significance of this discovery.

eud-1 is the gene for a sulfatase. Sulfatases are enzymes that chemically alter other proteins or molecules. The scientists in Tübingen do not yet know precisely which molecules are the targets of this special sulfatase. They presume, however, that eud-1 influences the characteristics of hormonal messenger substances. This would fit with their observation that eud-1 is mainly active in the worm’s neurons – where important messenger substances are produced.

Armed with the information about the eud-1 mutants, Ragsdale and his colleagues crosschecked their findings and introduced additional copies of the eud-1 gene into Pristionchus worms using genetic engineering tricks. Almost all of these transgenic worms developed the wide mouth form with the characteristic tooth.

eud-1 thus works like a train dispatcher at a large railway station who decides which platform a high-speed train can pull into based on the current traffic situation. During a critical phase in the worm’s development, it follows the one-way track to a “wide mouth” or “narrow mouth”.

The capacity of many organisms to tailor their development to the changing demands of the environment is known as “phenotypic plasticity”. The discovery of the des eud-1 gene is important because the molecular-genetic mechanisms that facilitate this plasticity in the animals have been largely unknown up to now.

“Phenotypic plasticity is often referred to as an explanation for evolutionary adaptations to different environmental conditions. We provide an example of a genetic mechanism that enables such evolutionary bifurcations,” says Sommer.

Exactly how the environment and genes interact is a controversial topic among evolutionary biologists in certain respects. It is clear that the environment selects between genetically different variants – this is Darwin’s natural selection. However, researchers like American biologist Mary-Jane West-Eberhard claim that the environment can also directly influence the emergence of new phylogenetic characteristics.

In the case of a “plastic” characteristic like the shape of the mouth aperture, external circumstances determine whether it presents in one form or another. West-Eberhard and other scientists suspect that a characteristic determined by the environment in this way can then become permanently defined at genetic level. Speciation or the division of species could even arise in this manner. However, this is little more than a controversial theory, for which hardly anything by way of experimental proof could be provided to date.

With the discovery of the switch gene eud-1, the Max Planck scientists in Tübingen have identified a genetic mechanism that fits well with this hypothesis. Hence, complex evolutionary models with plasticity and environmental influences as driving forces may perhaps be more than controversial musings.

Contact

Erik Ragsdale
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 70 7160-1496
Email: erik.ragsdale@­tuebingen.mpg.de
Nadja Winter
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-444
Fax: +49 7071 601-446
Email: presse-eb@­tuebingen.mpg.de
Original publication
Erik J. Ragsdale, Manuela R. Müller, Christian Rödelsperger, Ralf J. Sommer
A Genetic Switch Coupled to Micro- and Macroevolution of a Developmental Plasticity Acts Through a Sulfatase

Cell, 7 November 2013

Erik Ragsdale | Max-Planck-Institute
Further information:
http://www.mpg.de/7602474/roundworm-mouth

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>