Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt researchers help reveal complex role of genes in autism

05.04.2012
Multicenter study hones in on 2 genes as likely risk factors

Mutations in hundreds of genes involved in wiring the brain may contribute to the development of autism spectrum disorders (ASD).

That is one of the rather daunting conclusions of a paper published in the current issue of the journal Nature by a multi-institutional team that included researchers at Vanderbilt University Medical Center.

But while there is no simple explanation for ASD, the researchers identified a few genes as "genuine risk factors," raising hopes that they will be able to discover the underlying biological cause of these disorders. Numerous other genes are also strongly implicated based on their biological functions and roles in conditions related to ASD.

That knowledge could lead, in the future, to the ability to determine one's risk for developing autism and to new, more effective and personalized ways to treat individuals with an ASD, said James Sutcliffe, Ph.D., associate professor of Molecular Physiology & Biophysics and of Psychiatry at Vanderbilt, and a senior author of the paper.

Autism is a spectrum of developmental disorders characterized by impairments in communication and social interaction, and patterns of repetitive, restricted and stereotyped behaviors. According to the U.S. Centers for Disease Control and Prevention, it occurs in one in 88 children in the United States.

Researchers believe that 80 percent to 90 percent of the risk of developing ASD results from genetic factors. Despite this, only a few inherited risk factors have been discovered to date.

In the current study of 175 children with ASD and their parents, researchers in the ARRA Autism Sequencing Collaborative scoured the genome – using a technique called massively parallel sequencing – to search for mutations that might affect autism risk.

In addition to Vanderbilt, the collaborative includes researchers from Boston at the Broad Institute of MIT and Harvard and Massachusetts General Hospital, along with Baylor College of Medicine, Mount Sinai School of Medicine, the University of Pennsylvania, Carnegie Mellon University, and the University of Pittsburgh.

The researchers focused on the exome, the fraction of the human genome coding for proteins. They searched for single-letter DNA mutations that occurred spontaneously in the children and which were not present in their parents' genome.

Although rare, these so-called de novo point mutations tended to occur in genes that are functionally related to each other and to previously identified autism genes. This suggests that the proteins they encode may in some cases physically interact with each other. The relationships among the proteins encoded by these genes further supports their likely role as ASD risk factors.

With data from two other studies published in the current issue of Nature and with additional exome sequencing, the researchers identified two candidate genes. However, they explain less than 1 percent of the genetic risk of autism.

"These results clearly demonstrate the potential of DNA sequencing to articulate specific risk factors for autism," said the Broad Institute's Mark Daly, Ph.D., who, like Sutcliffe, is a senior author of the paper and a lead investigator of the ARRA Autism Sequencing Collaborative.

"We have only scratched the surface, but with continued collaborative efforts, these gene discoveries will point us to the underlying biological roots of autism."

The research described in the Nature paper was supported by ARRA (stimulus) funding from the National Institute of Mental Health and the National Human Genome Research Institute.

Bill Snyder | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>