Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt researchers help reveal complex role of genes in autism

05.04.2012
Multicenter study hones in on 2 genes as likely risk factors

Mutations in hundreds of genes involved in wiring the brain may contribute to the development of autism spectrum disorders (ASD).

That is one of the rather daunting conclusions of a paper published in the current issue of the journal Nature by a multi-institutional team that included researchers at Vanderbilt University Medical Center.

But while there is no simple explanation for ASD, the researchers identified a few genes as "genuine risk factors," raising hopes that they will be able to discover the underlying biological cause of these disorders. Numerous other genes are also strongly implicated based on their biological functions and roles in conditions related to ASD.

That knowledge could lead, in the future, to the ability to determine one's risk for developing autism and to new, more effective and personalized ways to treat individuals with an ASD, said James Sutcliffe, Ph.D., associate professor of Molecular Physiology & Biophysics and of Psychiatry at Vanderbilt, and a senior author of the paper.

Autism is a spectrum of developmental disorders characterized by impairments in communication and social interaction, and patterns of repetitive, restricted and stereotyped behaviors. According to the U.S. Centers for Disease Control and Prevention, it occurs in one in 88 children in the United States.

Researchers believe that 80 percent to 90 percent of the risk of developing ASD results from genetic factors. Despite this, only a few inherited risk factors have been discovered to date.

In the current study of 175 children with ASD and their parents, researchers in the ARRA Autism Sequencing Collaborative scoured the genome – using a technique called massively parallel sequencing – to search for mutations that might affect autism risk.

In addition to Vanderbilt, the collaborative includes researchers from Boston at the Broad Institute of MIT and Harvard and Massachusetts General Hospital, along with Baylor College of Medicine, Mount Sinai School of Medicine, the University of Pennsylvania, Carnegie Mellon University, and the University of Pittsburgh.

The researchers focused on the exome, the fraction of the human genome coding for proteins. They searched for single-letter DNA mutations that occurred spontaneously in the children and which were not present in their parents' genome.

Although rare, these so-called de novo point mutations tended to occur in genes that are functionally related to each other and to previously identified autism genes. This suggests that the proteins they encode may in some cases physically interact with each other. The relationships among the proteins encoded by these genes further supports their likely role as ASD risk factors.

With data from two other studies published in the current issue of Nature and with additional exome sequencing, the researchers identified two candidate genes. However, they explain less than 1 percent of the genetic risk of autism.

"These results clearly demonstrate the potential of DNA sequencing to articulate specific risk factors for autism," said the Broad Institute's Mark Daly, Ph.D., who, like Sutcliffe, is a senior author of the paper and a lead investigator of the ARRA Autism Sequencing Collaborative.

"We have only scratched the surface, but with continued collaborative efforts, these gene discoveries will point us to the underlying biological roots of autism."

The research described in the Nature paper was supported by ARRA (stimulus) funding from the National Institute of Mental Health and the National Human Genome Research Institute.

Bill Snyder | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>