Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vanderbilt researchers help reveal complex role of genes in autism

Multicenter study hones in on 2 genes as likely risk factors

Mutations in hundreds of genes involved in wiring the brain may contribute to the development of autism spectrum disorders (ASD).

That is one of the rather daunting conclusions of a paper published in the current issue of the journal Nature by a multi-institutional team that included researchers at Vanderbilt University Medical Center.

But while there is no simple explanation for ASD, the researchers identified a few genes as "genuine risk factors," raising hopes that they will be able to discover the underlying biological cause of these disorders. Numerous other genes are also strongly implicated based on their biological functions and roles in conditions related to ASD.

That knowledge could lead, in the future, to the ability to determine one's risk for developing autism and to new, more effective and personalized ways to treat individuals with an ASD, said James Sutcliffe, Ph.D., associate professor of Molecular Physiology & Biophysics and of Psychiatry at Vanderbilt, and a senior author of the paper.

Autism is a spectrum of developmental disorders characterized by impairments in communication and social interaction, and patterns of repetitive, restricted and stereotyped behaviors. According to the U.S. Centers for Disease Control and Prevention, it occurs in one in 88 children in the United States.

Researchers believe that 80 percent to 90 percent of the risk of developing ASD results from genetic factors. Despite this, only a few inherited risk factors have been discovered to date.

In the current study of 175 children with ASD and their parents, researchers in the ARRA Autism Sequencing Collaborative scoured the genome – using a technique called massively parallel sequencing – to search for mutations that might affect autism risk.

In addition to Vanderbilt, the collaborative includes researchers from Boston at the Broad Institute of MIT and Harvard and Massachusetts General Hospital, along with Baylor College of Medicine, Mount Sinai School of Medicine, the University of Pennsylvania, Carnegie Mellon University, and the University of Pittsburgh.

The researchers focused on the exome, the fraction of the human genome coding for proteins. They searched for single-letter DNA mutations that occurred spontaneously in the children and which were not present in their parents' genome.

Although rare, these so-called de novo point mutations tended to occur in genes that are functionally related to each other and to previously identified autism genes. This suggests that the proteins they encode may in some cases physically interact with each other. The relationships among the proteins encoded by these genes further supports their likely role as ASD risk factors.

With data from two other studies published in the current issue of Nature and with additional exome sequencing, the researchers identified two candidate genes. However, they explain less than 1 percent of the genetic risk of autism.

"These results clearly demonstrate the potential of DNA sequencing to articulate specific risk factors for autism," said the Broad Institute's Mark Daly, Ph.D., who, like Sutcliffe, is a senior author of the paper and a lead investigator of the ARRA Autism Sequencing Collaborative.

"We have only scratched the surface, but with continued collaborative efforts, these gene discoveries will point us to the underlying biological roots of autism."

The research described in the Nature paper was supported by ARRA (stimulus) funding from the National Institute of Mental Health and the National Human Genome Research Institute.

Bill Snyder | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>