Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt researchers help reveal complex role of genes in autism

05.04.2012
Multicenter study hones in on 2 genes as likely risk factors

Mutations in hundreds of genes involved in wiring the brain may contribute to the development of autism spectrum disorders (ASD).

That is one of the rather daunting conclusions of a paper published in the current issue of the journal Nature by a multi-institutional team that included researchers at Vanderbilt University Medical Center.

But while there is no simple explanation for ASD, the researchers identified a few genes as "genuine risk factors," raising hopes that they will be able to discover the underlying biological cause of these disorders. Numerous other genes are also strongly implicated based on their biological functions and roles in conditions related to ASD.

That knowledge could lead, in the future, to the ability to determine one's risk for developing autism and to new, more effective and personalized ways to treat individuals with an ASD, said James Sutcliffe, Ph.D., associate professor of Molecular Physiology & Biophysics and of Psychiatry at Vanderbilt, and a senior author of the paper.

Autism is a spectrum of developmental disorders characterized by impairments in communication and social interaction, and patterns of repetitive, restricted and stereotyped behaviors. According to the U.S. Centers for Disease Control and Prevention, it occurs in one in 88 children in the United States.

Researchers believe that 80 percent to 90 percent of the risk of developing ASD results from genetic factors. Despite this, only a few inherited risk factors have been discovered to date.

In the current study of 175 children with ASD and their parents, researchers in the ARRA Autism Sequencing Collaborative scoured the genome – using a technique called massively parallel sequencing – to search for mutations that might affect autism risk.

In addition to Vanderbilt, the collaborative includes researchers from Boston at the Broad Institute of MIT and Harvard and Massachusetts General Hospital, along with Baylor College of Medicine, Mount Sinai School of Medicine, the University of Pennsylvania, Carnegie Mellon University, and the University of Pittsburgh.

The researchers focused on the exome, the fraction of the human genome coding for proteins. They searched for single-letter DNA mutations that occurred spontaneously in the children and which were not present in their parents' genome.

Although rare, these so-called de novo point mutations tended to occur in genes that are functionally related to each other and to previously identified autism genes. This suggests that the proteins they encode may in some cases physically interact with each other. The relationships among the proteins encoded by these genes further supports their likely role as ASD risk factors.

With data from two other studies published in the current issue of Nature and with additional exome sequencing, the researchers identified two candidate genes. However, they explain less than 1 percent of the genetic risk of autism.

"These results clearly demonstrate the potential of DNA sequencing to articulate specific risk factors for autism," said the Broad Institute's Mark Daly, Ph.D., who, like Sutcliffe, is a senior author of the paper and a lead investigator of the ARRA Autism Sequencing Collaborative.

"We have only scratched the surface, but with continued collaborative efforts, these gene discoveries will point us to the underlying biological roots of autism."

The research described in the Nature paper was supported by ARRA (stimulus) funding from the National Institute of Mental Health and the National Human Genome Research Institute.

Bill Snyder | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>