Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny plants with huge potential

11.01.2017

Jena University scientists investigate potential of duckweed

Wolffia globosa, a tiny, rootless duckweed, or water lens, apparently has what it takes to achieve great things.


Duckweed has a huge potential as a human food source.

Photo: Jan-Peter Kasper/FSU Jena


Klaus Appenroth (r.) and Gerhard Jahreis in a laboratory of the University Jena with a great collection of duckweed.

Photo: Jan-Peter Kasper/FSU Jena

Researchers at the University of Jena (Germany), together with colleagues in India and Germany, have investigated the potential of various duckweeds as a human food source. The results, which are very promising, have been published under the title ‘Nutritional value of duckweeds (Lemnaceae) as human food’ in the leading journal ‘Food Chemistry’.

“Duckweeds can definitely serve as a source of protein in human nutrition,” says Prof. Gerhard Jahreis of the Friedrich Schiller University Jena. It is not without reason that duckweeds are dubbed ‘green machines’, the nutritional scientist adds. Jahreis explains that the protein content of duckweeds is comparable to that of lupins, rape or peas, with a protein yield of 30 per cent of dry weight.

What is more, these tiny plants contain valuable omega-3 fatty acids such as stearidonic acid and alpha-linolenic acid. Possible uses for duckweeds would be in the ever-popular smoothies or gluten-free baked goods.

“Duckweeds multiply very rapidly, but do not require any additional cultivable land,” says Dr Klaus Appenroth, associate professor at Friedrich Schiller University Jena. In view of the decrease in areas of farmland, this gives duckweed a huge advantage over soya, for example. For thousands of years, duckweed species have been on the menu in Asian countries such as Thailand, Cambodia and Laos.

As a plant physiologist, Appenroth has dedicated nearly his entire research career at the University Jena to the tiny plants, and he has built up an extensive collection of Lemnaceae (commonly known as duckweeds or water lenses), among other things. He singles out in particular the species Wolffia globosa, which is served up in Asia in the form of soup, as a vegetable or in omelette. In the latest tests by the research group, Wolffia globosa showed itself to be the most promising.

As yet these duckweeds have not been cultivated, but simply ‘harvested’ from bodies of water. However, there are some initial experimental facilities in Israel and the Netherlands, where duckweeds are produced on an industrial scale. Wolffia globosa measure only 0.7 to 1.5 mm, are oval in shape and rootless.

They multiply so rapidly that in a short time they can cover the entire surface of a body of water. A further argument in favour of having these plants as part of the human diet is that duckweeds easily absorb trace elements that are dissolved in water. This means that with little expense and effort, they can be used to relieve deficiency symptoms due to malnutrition.

Other potential applications for duckweeds are fish farming and water purification. The minute plants could also be used for producing bio-ethanol.

Original publication:
Klaus-J. Appenroth, K. Sowjanya Sree, Volker Böhm, Simon Hammann, Walter Vetter, Matthias Leiterer, Gerhard Jahreis: ‘Nutritional value of duckweeds (Lemnaceae) as human food’; Food Chemistry; DOI: 10.1016/j.foodchem.2016.08.116

Contact:
Dr Klaus Appenroth (Privatdozent, Associate Professor)
Institute of General Botany and Plant Physiology of Friedrich Schiller University Jena
Dornburger Straße 159, 07743 Jena, Germany
Phone: ++49 3641 / 949233
E-mail: Klaus.Appenroth[at]uni-jena.de

Prof. Gerhard Jahreis
Institute of Nutrition of Friedrich Schiller University Jena
Dornburger Straße 24, 07743 Jena, Germany
Phone: ++49 3641 / 949610
E-mail: b6jage[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Stephan Laudien | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>