Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Reveals the Biomechanics of How Marine Snail Larvae Swim

19.12.2013
Equipped with high-speed, high-resolution video, scientists have discovered important new information on how marine snail larvae swim, a key behavior that determines individual dispersal and ultimately, survival.

Researchers from the Woods Hole Oceanographic Institution (WHOI) and Stony Brook University grew Atlantic slipper limpet larvae, which are slightly larger than a grain of sand, and recorded microscopic video of them swimming.


Atlantic slipper limpets are common marine snails native to the northeastern coast of the U.S. (Photo by Karen Chan, Woods Hole Oceanographic Institution)

In previous studies, it has been commonly thought that larvae swim faster when they beat their hair-like cilia faster. However, this new microscopic video and research shows that this is not the case.

“I was actually quite surprised when I saw there was no relationship between cilia beat frequency and how fast they swim,” says Karen Chan, a WHOI postdoctoral scholar and the lead author on the study, which was published today in PLOS ONE.

The larvae actually control how fast they swim by subtly shifting the position of their velar lobes – flat, disc-shaped wings fringed with cilia. The ability to make small movements with their velar lobes, akin to how a bird adjusts the angle of its wings while soaring, exhibits a more complex neuromuscular control than previously thought.

The Atlantic slipper limpet (Crepidula fornicata) is a common marine snail native to the northeastern U.S. It has become an invasive nuisance elsewhere in the world competing with endemic species, particularly in Europe. Co-author Dianna Padilla from Stony Brook University’s Department of Ecology and Evolution collected the abundant study species from the North Shore of Long Island, NY, for this research project.

"Collaborations between organismal biologists such as myself and oceanographers, who develop and use such clever technology, is helping us find answers to important questions that would otherwise be impossible," Padilla says. She grew the larvae in her lab, which were sent to WHOI for video analysis.

Houshuo Jiang, an associate scientist at WHOI and collaborator on this project, says their ultimate goal is to understand the limpet’s role in shaping the marine ecosystem and environment and climate in general.

With support from the National Science Foundation Biological Oceanography program, Jiang built a customized, vertically oriented optical system that can magnify and record high-speed, high-resolution video of microorganisms freely swimming in a vessel of seawater at 2,000 frames per second.

“Much more can be observed in great detail using this setup than observing under a microscope,” Jiang says.

Traditionally, scientists have recorded how fast larvae beat their cilia by placing a piece of transparency on a computer screen and tracing and counting the cilia by hand.

“We developed a method to do the same thing, but digitally,” Chan says.

In the high-resolution video, the cilia alter from bright to dark as they beat up and down. Chan collected the bright to dark ratio and calculated for variation in order to time how fast and frequently a larva beat its cilia.

“This is a way to apply a new technique to address this old problem,” she says.

She also measured the length of each larva’s shell, the area of the velar lobes, and the distance between the center of the lobe and the center of the shell in order to calculate velar lobe orientation. She recorded and observed the swimming larvae from when they were two days old to 19 days old.

She found that within a single day, the larvae could vary their speed from swimming one body length per second to four body lengths per second.

“What this means is they have a lot of control over how fast they swim,” Chan says. And how they swim can determine where they may go.

“These results show the flexibility that these little animals have, which likely makes them so successful,” Padilla says.

Support for this project was provided by the National Science Foundation (NSF OCE-1129496 and NSF-IOS-0920032), the Croucher Foundation, the Royal Swedish Academy of Sciences, and the Woods Hole Oceanographic Institution’s Coastal Ocean Institute and Ocean Life Institute.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment.

Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/news-release/snailswim

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>