Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Reveals the Biomechanics of How Marine Snail Larvae Swim

19.12.2013
Equipped with high-speed, high-resolution video, scientists have discovered important new information on how marine snail larvae swim, a key behavior that determines individual dispersal and ultimately, survival.

Researchers from the Woods Hole Oceanographic Institution (WHOI) and Stony Brook University grew Atlantic slipper limpet larvae, which are slightly larger than a grain of sand, and recorded microscopic video of them swimming.


Atlantic slipper limpets are common marine snails native to the northeastern coast of the U.S. (Photo by Karen Chan, Woods Hole Oceanographic Institution)

In previous studies, it has been commonly thought that larvae swim faster when they beat their hair-like cilia faster. However, this new microscopic video and research shows that this is not the case.

“I was actually quite surprised when I saw there was no relationship between cilia beat frequency and how fast they swim,” says Karen Chan, a WHOI postdoctoral scholar and the lead author on the study, which was published today in PLOS ONE.

The larvae actually control how fast they swim by subtly shifting the position of their velar lobes – flat, disc-shaped wings fringed with cilia. The ability to make small movements with their velar lobes, akin to how a bird adjusts the angle of its wings while soaring, exhibits a more complex neuromuscular control than previously thought.

The Atlantic slipper limpet (Crepidula fornicata) is a common marine snail native to the northeastern U.S. It has become an invasive nuisance elsewhere in the world competing with endemic species, particularly in Europe. Co-author Dianna Padilla from Stony Brook University’s Department of Ecology and Evolution collected the abundant study species from the North Shore of Long Island, NY, for this research project.

"Collaborations between organismal biologists such as myself and oceanographers, who develop and use such clever technology, is helping us find answers to important questions that would otherwise be impossible," Padilla says. She grew the larvae in her lab, which were sent to WHOI for video analysis.

Houshuo Jiang, an associate scientist at WHOI and collaborator on this project, says their ultimate goal is to understand the limpet’s role in shaping the marine ecosystem and environment and climate in general.

With support from the National Science Foundation Biological Oceanography program, Jiang built a customized, vertically oriented optical system that can magnify and record high-speed, high-resolution video of microorganisms freely swimming in a vessel of seawater at 2,000 frames per second.

“Much more can be observed in great detail using this setup than observing under a microscope,” Jiang says.

Traditionally, scientists have recorded how fast larvae beat their cilia by placing a piece of transparency on a computer screen and tracing and counting the cilia by hand.

“We developed a method to do the same thing, but digitally,” Chan says.

In the high-resolution video, the cilia alter from bright to dark as they beat up and down. Chan collected the bright to dark ratio and calculated for variation in order to time how fast and frequently a larva beat its cilia.

“This is a way to apply a new technique to address this old problem,” she says.

She also measured the length of each larva’s shell, the area of the velar lobes, and the distance between the center of the lobe and the center of the shell in order to calculate velar lobe orientation. She recorded and observed the swimming larvae from when they were two days old to 19 days old.

She found that within a single day, the larvae could vary their speed from swimming one body length per second to four body lengths per second.

“What this means is they have a lot of control over how fast they swim,” Chan says. And how they swim can determine where they may go.

“These results show the flexibility that these little animals have, which likely makes them so successful,” Padilla says.

Support for this project was provided by the National Science Foundation (NSF OCE-1129496 and NSF-IOS-0920032), the Croucher Foundation, the Royal Swedish Academy of Sciences, and the Woods Hole Oceanographic Institution’s Coastal Ocean Institute and Ocean Life Institute.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment.

Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/news-release/snailswim

More articles from Life Sciences:

nachricht What Makes Stem Cells into Perfect Allrounders
27.06.2017 | Universität Zürich

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>