Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Reveals the Biomechanics of How Marine Snail Larvae Swim

19.12.2013
Equipped with high-speed, high-resolution video, scientists have discovered important new information on how marine snail larvae swim, a key behavior that determines individual dispersal and ultimately, survival.

Researchers from the Woods Hole Oceanographic Institution (WHOI) and Stony Brook University grew Atlantic slipper limpet larvae, which are slightly larger than a grain of sand, and recorded microscopic video of them swimming.


Atlantic slipper limpets are common marine snails native to the northeastern coast of the U.S. (Photo by Karen Chan, Woods Hole Oceanographic Institution)

In previous studies, it has been commonly thought that larvae swim faster when they beat their hair-like cilia faster. However, this new microscopic video and research shows that this is not the case.

“I was actually quite surprised when I saw there was no relationship between cilia beat frequency and how fast they swim,” says Karen Chan, a WHOI postdoctoral scholar and the lead author on the study, which was published today in PLOS ONE.

The larvae actually control how fast they swim by subtly shifting the position of their velar lobes – flat, disc-shaped wings fringed with cilia. The ability to make small movements with their velar lobes, akin to how a bird adjusts the angle of its wings while soaring, exhibits a more complex neuromuscular control than previously thought.

The Atlantic slipper limpet (Crepidula fornicata) is a common marine snail native to the northeastern U.S. It has become an invasive nuisance elsewhere in the world competing with endemic species, particularly in Europe. Co-author Dianna Padilla from Stony Brook University’s Department of Ecology and Evolution collected the abundant study species from the North Shore of Long Island, NY, for this research project.

"Collaborations between organismal biologists such as myself and oceanographers, who develop and use such clever technology, is helping us find answers to important questions that would otherwise be impossible," Padilla says. She grew the larvae in her lab, which were sent to WHOI for video analysis.

Houshuo Jiang, an associate scientist at WHOI and collaborator on this project, says their ultimate goal is to understand the limpet’s role in shaping the marine ecosystem and environment and climate in general.

With support from the National Science Foundation Biological Oceanography program, Jiang built a customized, vertically oriented optical system that can magnify and record high-speed, high-resolution video of microorganisms freely swimming in a vessel of seawater at 2,000 frames per second.

“Much more can be observed in great detail using this setup than observing under a microscope,” Jiang says.

Traditionally, scientists have recorded how fast larvae beat their cilia by placing a piece of transparency on a computer screen and tracing and counting the cilia by hand.

“We developed a method to do the same thing, but digitally,” Chan says.

In the high-resolution video, the cilia alter from bright to dark as they beat up and down. Chan collected the bright to dark ratio and calculated for variation in order to time how fast and frequently a larva beat its cilia.

“This is a way to apply a new technique to address this old problem,” she says.

She also measured the length of each larva’s shell, the area of the velar lobes, and the distance between the center of the lobe and the center of the shell in order to calculate velar lobe orientation. She recorded and observed the swimming larvae from when they were two days old to 19 days old.

She found that within a single day, the larvae could vary their speed from swimming one body length per second to four body lengths per second.

“What this means is they have a lot of control over how fast they swim,” Chan says. And how they swim can determine where they may go.

“These results show the flexibility that these little animals have, which likely makes them so successful,” Padilla says.

Support for this project was provided by the National Science Foundation (NSF OCE-1129496 and NSF-IOS-0920032), the Croucher Foundation, the Royal Swedish Academy of Sciences, and the Woods Hole Oceanographic Institution’s Coastal Ocean Institute and Ocean Life Institute.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment.

Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu
http://www.whoi.edu/news-release/snailswim

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>