Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study analyzes dynamical properties in antibiotic resistance enzyme

19.07.2013
Global structural properties have changed across bacterial families without putting limits on new antibiotic resistance

Antibiotic-resistant bacteria have been emerging at an alarming rate. In some of the scariest of these pathogens, the mechanism responsible for the bacteria's ability to defeat antibiotics is a complex protein molecule embedded in the bacterial cell wall -- the enzyme â-lactamase.


This is beta-lactamase, showing different permutations at the active site.

Credit: Dennis Livesay

The rapid evolution of â-lactamase is the key factor responsible for the growing antibiotic resistance of some of the most terrifying pathogenic bacteria on the planet – bacteria which are becoming rapidly immune to most, if not all, of our drugs. We can trace the genetic changes responsible, but actually understanding what those changes are doing to the properties of the hugely complex molecule is another matter.

The enzyme and its antibiotic-destroying effects are not new. â-lactamase has evolved over the millennia as a defensive weapon, a molecular machine for chopping up chemical weapons deployed in the wars bacteria fight against each other – antibacterial weapons that we have since discovered and call "antibiotics." Because this chemical warfare has gone on for billions of years, the protein can be found in subtle variants in many bacteria.

Some of the variations in â-lactamase are ancient, but some are very recent, as the molecule has experienced intense evolutionary pressure in the last century due to human over-use of antibiotic compounds. However, it is still somewhat of mystery what specific structural or chemical changes in the protein have allowed its recent rapid changes in counter-antibiotic capability.

Now, new research appears to have uncovered the mechanisms involved, both in the protein's long-term evolution and in the specific changes responsible for the rapid development of resistance against antibiotics. In a finding published July 18 in the online edition of PLOS Computational Biology, University of North Carolina at Charlotte researchers Dennis R. Livesay, Deeptak Verma, and Donald J. Jacobs show significant evolution in the structural characteristics and physiochemical properties of â-lactamase across bacterial families, but also find that these evolutionary characteristics do not appear to be specifically related to different versions of antibiotic resistance.

Instead, the researchers found that relatively minor changes in the structure of the enzyme's active site – the area of the protein that couples with the antibiotic molecules and disables them – are capable, independent of global changes to the protein structure, of adapting the enzyme to new antibiotics. Though it was not the result the researchers were hoping to discover, the finding does have large implications.

"It's actually a cautionary result because it highlights that these mutations are not being restricted too much by the global properties of the enzyme," said Livesay, a faculty member in bioinformatics. Livesay notes that different families of bacteria have evolved significant physiochemical differences in their â-lactamase molecules, but that these structural differences have allowed resistance to the same medically administered antibiotics to develop nonetheless.

Livesay's team studied the structure and properties of class-A â-lactamase proteins, one of four "families" of the protein that have evolved in bacteria and other organisms. They analyzed about a dozen proteins – those in the group whose structures have previously been described – and defined the intricate physiochemical properties of each of the proteins' structures, while comparing the individual protein structure characteristics they discovered with the phylogenetic trees of the bacteria they came from.

Central to their approach was the Distance Constraint Model (DCM), a program developed by Jacobs, a UNC Charlotte physicist, and Livesay. The DCM allows detailed but also relatively fast analysis of the protein structure's physical properties. The DCM's efficient but accurate structural analysis allowed the researchers to make complex structural comparisons between many different (but related) molecules – an analysis that would otherwise require vast amounts of processing power. The analysis allowed the researchers to pinpoint specific differences between the proteins, such as differing amounts of rigidity/flexibility in specific parts of the protein's complex structure.

"Biology is an inherently comparative science. From Darwin's finches to modern molecular biology, we frequently learn most through comparisons. In this work, we extend the comparison paradigm to computational biophysics by leveraging the speed and accuracy of the DCM." Livesay said.

'We started by asking a very simple question: do the physical and chemical properties vary in a way that directly reflects the divergence of the family?" Livesay said. "What we did was calculate these properties and ask if those in the same evolutionary outgroups have similar properties and are those in different outgroups likely to have different properties?"

"We did some simple calculations and we proved conclusively that the physiochemical properties are varying in statistically significant way with the phylogeny. This is really cool," he noted, "because it demonstrates that evolution is manipulating chemistry in a straightforward way."

The next step was for the researchers to compare the genetically linked structural properties of the proteins to different varieties of antibiotic resistance in the bacteria. Livesay notes that antibiotic resistance in bacteria has long been studied and, in fact, used as an alternative form of classification.

"We wanted to see if we could link the properties we calculate to these activities. And it turns out, No, we can't," Livesay said. "Frankly, I was a little disappointed when we first saw that. What's happening is that within a lineage the global properties change very little, but the severity of their response to antibiotics can be huge."

Though the properties of the protein vary from one bacterial family to another, the researchers concluded that the entire â-lactamase group has general characteristics that prevent the protein's basic physiochemical properties from affecting the enzyme active site, where antibiotics are attacked.

"This enzyme is a rock," Livesay noted. "It's atypically rigid -- much more rigid than most proteins. So how does the enzyme become active against an antibiotic it wasn't active against before? Well it had some chemical groups that were simply in the way, meaning steric clashes would restrict what antibiotics could fit in the active site of the enzyme."

The implication is that the general rigidity of â-lactamase allows relatively simple genetic changes – changes affecting only the structure of the active site – to cause new antibiotic resistance without otherwise affecting the behavior of the protein.

"It doesn't require any wholesale change in the protein's global properties to manipulate this local chemistry, so it turns out that these mutations are evolutionarily cheap," Livesay said. "You can evolve these slight changes in the active site against any background of the global properties. A very small number of gene changes and a very small number of amino acid changes in the protein are involved."

Since the larger structure of the protein does not interact with the behavior of the active site, Livesay stresses, it means that the same kinds of antibiotic resistance can re-occur across a broad range of bacteria from different families, though they have evolved differences in â-lactamase structure.

The ease with which the enzyme can evolve and adapt to new antibiotics, combined with the fact that some bacteria carry the â-lactamase gene on a plasmid (a separate ring of genetic material) that can be swapped with even unrelated bacteria, and the huge selective pressure caused by human overuse of antibiotics, all combine to create our current nightmare of widespread, rapidly developing antibiotic resistance.

According to Livesay, the current finding thus has larger implications.

"Our findings on class A â-lactamases are actually a much more terrifying result than one might expect," he said. "It highlights that not only are their genes on mobile elements that are being transferred and shared, it turns out that these mutations are not being constricted too much by the physiochemical properties of the enzyme. That is presumably also contributing to the fact that â-lactamases in general have adapted so quickly."

Going forward, the team is currently analyzing the â-lactamase genes that lead to carbapenem-resistant Enterobacteriaceae (CRE) infections. "Class B â-lactamases are the most dire, the most scary," Livesay said. "These genes are highly mobile, on mobile elements and they are plastic and very active. They can be resistant to almost all the antibiotics we have. The enzyme can recognize in the active site all these different things, under different pH's. It's extraordinarily promiscuous. As such, CRE infections are very difficult to treat, leading to mortality estimates as high as 50% for infections that used to be treated with penicillin."

This research is funded under grant number GM101570 from the National Institutes of Health. The complete paper can be seen online at http://www.ploscompbiol.org .

Source: Dennis Livesay, 704-687-7995, drlivesa@uncc.edu

James Hathaway | EurekAlert!
Further information:
http://www.uncc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>