Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why starving cells prolong life

13.10.2008
Scientists expose the role of mitochondrial sirtuins
Publication in the Journal of Molecular Biology

Cellular damage due to stress is an important factor in ageing processes. It is, thus, amazing that starving, which is a stress factor per se, decelerates ageing processes and extends the lifespan of organisms. It has long been known that proteins from the sirtuin family contribute to this mechanism. To date, the exact function of the seven members of the sirtuin family in mammals has, however, not yet been clarified.

Results obtained in studies performed by protein research scientists in Bochum and Dortmund under the auspices of Assistant Professor Dr. Clemens Steegborn (Institute for Physiological Chemistry at RUB) have supplied first insights into this phenomenon. The scientists identified initial functions of the two human sirtuins Sirt3 and Sirt5 that reside in mitochondria, the energy supplying "cellular power stations." Their results are published in the current volume of the Journal of Molecular Biology.

Influence on the cellular self-destruction program

The mitochondria within the cell are responsible for the provision of energy by utilizing food molecules. This fact suggests that sirtuins located at this site should be involved in the life-prolonging effect of nutritional deficiency. The scientists did, however, discover that Sirt5 is not only located within the mitochondria, but also within the so-called intermembrane space between the exterior and interior membrane of the mitochondria. At this site, Sirt5 can modify the protein cytochrome c, which plays a major role in both, energy generation and the cellular self-destruction program, i.e. apoptosis, the reaction to extreme cellular stress. Dr. Steegborn states "that malfunctioning of apoptosis could be an explanation for the presumed role of Sirt 5 in some forms of cancer, but that the precise function of Sirt5 and the modification of cytochrome c have not yet been finally clarified."

Use of alternative sources of energy

The scientists were, however, able to identify a precisely defined function for Sirt3. They were able to show that two central metabolic enzymes are altered and thereby activated. This activation enables the cells, if subject to a lack of food, to make use of other sources of energy and to use these effectively. More specifically, Sirt3 activates special forms of these enzymes that simultaneously form NADPH, which is required for the regeneration of cellular anti-stress systems. This explains how increased Sirt3 activity during starvation can contribute to a prolonged lifespan.

Long-term target: healthy aging

Diverse research groups have been able to show that increased sirtuin activity can increase the lifespan of model organisms. The situation is, however, more complex in human beings because different sirtuins are located at diverse sites in the cell and all have specific functions. The current research work, performed by the scientists in Bochum and Dortmund, are a first step towards the comprehension of these processes. Exact understanding of the specific functions is however a prerequisite to enable utilization of the correct sirtuin as target molecule for the desired therapeutic effect. Dr. Steegborn assumes that this will probably not lead to a life-prolonging elixir. The scientists do, however, hope to be able to identify agents that enable the treatment of age-related diseases. This in turn would enable "healthy aging."

Title

Christine Schlicker, Melanie Gertz, Panagiotis Papatheodorou, Barbara Kachholz, Christian F.W. Becker, Clemens Steegborn: Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. In: J Mol Biol., Oct 10, 2008 vol. 382, no. 3, 790-801.

Further Information

Assistant Professor Dr. Clemens Steegborn, Institute for Physiologic Chemistry, Medical Faculty of the Ruhr University Bochum, 44780 Bochum, Tel. 0234/32-27041, E-Mail: Clemens.Steegborn@rub.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de
http://www.ruhr-uni-bochum.de/physiolchem/steegborn/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>