Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists identify 2 molecules that affect brain plasticity in mice

26.11.2009
You wouldn't want a car with no brakes. It turns out that the developing brain needs them, too.

Researchers at the Stanford University School of Medicine have identified a set of molecular brakes that stabilize the developing brain's circuitry. Moreover, experimentally removing those brakes in mice enhanced the animals' performance in a test of visual learning, suggesting a long-term path to therapeutic application.

In a study to be published Nov. 25 in Neuron, Carla Shatz, PhD, professor of neurobiology and of biology, and her colleagues have implicated two members of a large family of proteins critical to immune function (collectively known as HLA molecules in humans and MHC1 molecules in mice) in brain development. Until recently, these immune-associated molecules were thought to play no role at all in the healthy brain.

In previous studies, Shatz and her co-investigators have shown that MHC molecules are found on the surfaces of nerve cells in the brain, and that they temper "synaptic plasticity": the ease with which synapses — the more than 100 trillion points of contact between nerve cells that determine brain circuitry — are strengthened, weakened, created or destroyed in response to experience. In one recent study, the Shatz group tied two specific members of the MHC1 family, called K and D, to the ability of circuits in a brain region responsible for motor learning to be refined by a learning experience.

This time, the scientists looked at vision processing in the brain. "We'd already found that K and D were located in brain regions we knew mattered: the visual cortex, and a relay station in the brain that sends its input to the visual cortex," said Shatz.

A good example of the "use it or lose it" manner in which experience-dependent circuit tuning shapes the brain is the ability of one eye to take over brain circuits that normally would be used by the other eye.

"Normally, your two eyes share vision-devoted brain circuits 50/50," Shatz said. "But when kids are born with a congenital cataract, or lose an eye — or in animal models where one eye is blocked — so that the brain's visual-information-processing machinery is no longer being used evenly by both eyes, the other eye doesn't just sit there. It takes over the machinery normally reserved for input from the other eye."

In order to map the roles of K and D in visual development, Shatz's group studied mice genetically engineered to lack these two molecules. They found that developmental circuit tuning was abnormal, she said. "The nerve input from the eyes was the same at the gross level — the major nerve tracts still went from the eye to the first visual relay system, and from there to the visual cortex. But the detailed connections within each structure had been altered. The adult patterning didn't develop normally."

In these K- and D-deficient mice, the capacity of a more-used eye to dominate visual information-processing circuitry is abnormal, and in a surprising way, said Shatz. "There's too much of it," she said. "If one eye stops functioning, the other eye takes over more than its fair share of the cortical machinery devoted to the brain's visual-information-processing territory."

In a test of visual performance, Shatz's team showed that the K- and D-deficient mice could see better through their remaining eye than could ordinary mice raised with a similarly blocked eye. "This suggests there's some kind of molecular brake on plasticity in the brain, and these molecules are involved in the braking system. Taking off the brake improved performance," she said.

Using a new method for localizing molecules in three-dimensional chunks of tissue (pioneered by co-author Stephen Smith, PhD, professor of molecular and cellular physiology and a member of the Stanford Cancer Center), Shatz's team was able to show that K and D are located at synapses. "We've placed them at the scene of the crime, right where circuit change happens," she said. "We think that in the brain they're pieces of a common braking-system pathway."

What's going on in the brain that needs a brake in the first place? Without both accelerators and brakes, any dynamic system — such as the brain, where connections change dramatically in response to whether they're being used — would become unstable, Shatz said. "Some of us think epilepsy, for example, could be a consequence of this process being not carefully controlled and regulated, and happening too easily."

That MHC molecules are also expressed on neurons has very large implications, because inflammation works through the immune system. Inflammation triggers the release of molecules called cytokines that change MHC1 levels on cells throughout the body, said Shatz. "If this process also changes MCH1 levels on cells in the brain, could that alter the circuit-tuning process enough to make a difference in behavior?"

There are also therapeutic implications, Shatz observed. "Maybe in children with learning disabilities, the brake's been applied too hard — or it could mean that after injury to an adult's brain, taking the brake off or loosening it up a bit could allow the brain to get retrained more easily."

###
The study's first author is Akash Datwani, PhD, a former postdoctoral scholar in Shatz's lab now with Elan Corp. in South San Francisco. Other Stanford contributors are research scientists Mike McConnell, PhD, of the Shatz lab (now at the Salk Institute in La Jolla, Calif.); Kristina Micheva, PhD, of the Smith lab; Brad Busse, a graduate student in Smith's lab; and Mehrdad Shamloo, PhD, of Stanford's Neuroscience Behavior Core Facility. The study was funded by the National Institutes of Health, the G. Harold and Leila Y. Mathers Charitable Foundation and the Dana Foundation.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Bruce Goldman | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>