Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stability for the genome

10.05.2013
In cancer cells, the genome is often in a chaotic, unstable state. Now, a research group from the Würzburg Biocenter describes which enzymes can stabilize DNA in the journal “Nature”.
In healthy human cells, the genome tends to be in a highly ordered state: DNA is neatly packed into precisely 46 chromosomes. In cancer cells, the picture is often very different: chromosomes may be broken or damaged in some other way, and sometimes even the entire genome is completely jumbled.

The stability of the genome depends on enzymes that have hardly changed over the course of evolution. This is what a biochemistry research group from the University of Würzburg, with colleagues from the USA and Switzerland, is reporting in the scientific journal “Nature”. The article also describes the DNA locations where enzymes exercise their effect.

Without helicases the genome breaks down

The enzymes concerned are so-called Pif1 helicases. “Whether in bacteria, yeast cells, or humans, Pif1 helicases or their homologs have the same function everywhere: they stabilize the genome,” says Dr. Katrin Paeschke, who runs an independent junior research group at the University of Würzburg’s Department of Biochemistry.

How important the helicases are becomes particularly apparent when they stop working. “This is often the case in breast cancer cells,” says Paeschke. There are also obvious consequences when the enzymes mutate in baker’s yeast cells: this leads to dramatic decomposition processes in their genome.

Where helicases stabilize DNA

Helicases exercise their stabilizing effect on special structures in the genome, the so-called G-quadruplexes. “These are node-like elements that can occur in the DNA molecule,” explains the Würzburg researcher. These structures require special protection: where they occur, DNA breaks down very easily. Without the protective helicases, particularly chaotic changes take place around the nodes, as Paeschke’s team observed.

Further research into G-quadruplexes

These new insights will not have an immediate impact on cancer treatment. “Looking further into the future, it is conceivable that regulating the G-quadruplexes might slow the breakdown of the genome in cancer cells,” comments Paeschke.

But first, the biochemist and her team are keen to investigate a different aspect: “G-quadruplexes are also misregulated in healthy cells in the presence of Pif helicases. We want to analyze how these important structures are repaired under these circumstances.”

About Katrin Paeschke

After a period of research at Princeton University (USA), Katrin Paeschke arrived at the University of Würzburg in early 2012. Since then she has been running an Emmy Noether junior research group here that is funded by the German Research Foundation (DFG). In 2012, she received a Heinz Maier-Leibnitz Prize from the DFG and the Röntgen Prize from the University of Würzburg. Both awards are bestowed upon outstanding young scientists.

“Pif1 family helicases suppress genome instability at G-quadruplex motifs”, Katrin Paeschke, Matthew L. Bochman, P. Daniela Garcia, Petr Cejka, Katherine L. Friedman, Stephen C. Kowalczykowski, and Virginia A. Zakian, Nature, 2013, May 8, doi: 10.1038/nature12149

Contact

Dr. Katrin Paeschke, Department of Biochemistry, Biocenter at the University of Würzburg, katrin.paeschke@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Biocenter Biochemistry DFG DNA G-quadruplex cancer cells healthy cell human cell

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>