Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Cells: UQAM researcher solves two 20-year-old problems

07.04.2010
Thanks to two technologies developed by Professor Benoît Marsan and his team at the Université du Québec à Montréal (UQAM) Chemistry Department, the scientific and commercial future of solar cells could be totally transformed.

Professor Marsan has come up with solutions for two problems that, for the last twenty years, have been hampering the development of efficient and affordable solar cells. His findings have been published in two prestigious scientific journals, the Journal of the American Chemical Society (JACS) and Nature Chemistry.

The untapped potential of solar energy
The Earth receives more solar energy in one hour than the entire planet currently consumes in a year! Unfortunately, despite this enormous potential, solar energy is barely exploited. The electricity produced by conventional solar cells, composed of semiconductor materials like silicon, is 5 or 6 times more expensive than from traditional energy sources, such as fossil fuels or hydropower. Over the years, numerous research teams have attempted to develop a solar cell that would be both efficient in terms of energy and inexpensive to produce.
Dye-sensitized solar cells
One of the most promising solar cells was designed in the early '90s by Professor Michael Graetzel of the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland. Based on the principle of photosynthesis—the biochemical process by which plants convert light energy into carbohydrate (sugar, their food)—the Graetzel solar cell is composed of a porous layer of nanoparticles of a white pigment, titanium dioxide, covered with a molecular dye that absorbs sunlight, like the chlorophyll in green leaves. The pigment-coated titanium dioxide is immersed in an electrolyte solution, and a platinum-based catalyst completes the package.

As in a conventional electrochemical cell (such as an alkaline battery), two electrodes (the titanium dioxide anode and the platinum cathode in the Graetzel cell) are placed on either side of a liquid conductor (the electrolyte). Sunlight passes through the cathode and the electrolyte, and then withdraws electrons from the titanium dioxide anode, a semiconductor at the bottom of the cell. These electrons travel through a wire from the anode to the cathode, creating an electrical current. In this way, energy from the sun is converted into electricity.

Most of the materials used to make this cell are low-cost, easy to manufacture and flexible, allowing them to be integrated into a wide variety of objects and materials. In theory, the Graetzel solar cell has tremendous possibilities. Unfortunately, despite the excellence of the concept, this type of cell has two major problems that have prevented its large-scale commercialisation:

The electrolyte is: a) extremely corrosive, resulting in a lack of durability; b) densely coloured, preventing the efficient passage of light; and c) limits the device photovoltage to 0.7 volts.

The cathode is covered with platinum, a material that is expensive, non-transparent and rare. Despite numerous attempts, until Professor Marsan's recent contribution, no one had been able to find a satisfactory solution to these problems.

Professor Marsan's solutions
Professor Marsan and his team have been working for several years on the design of an electrochemical solar cell. His work has involved novel technologies, for which he has received numerous patents. In considering the problems of the cell developed by his Swiss colleague, Professor Marsan realized that two of the technologies developed for the electrochemical cell could also be applied to the Graetzel solar cell, specifically:
For the electrolyte, entirely new molecules have been created in the laboratory whose concentration has been increased through the contribution of Professor Livain Breau, also of the Chemistry Department. The resulting liquid or gel is transparent and non-corrosive and can increase the photovoltage, thus improving the cell's output and stability.
For the cathode, the platinum can be replaced by cobalt sulphide, which is far less expensive. It is also more efficient, more stable and easier to produce in the laboratory.

Immediately following their publication in JACS and Nature Chemistry, Professor Marsan's proposals were received enthusiastically by the scientific community. Many view his contribution as a major research breakthrough on the production of low-cost and efficient solar cells.

Links to the articles in JACS and Nature Chemistry:
http://pubs.acs.org/doi/abs/10.1021/ja905970y
http://www.nature.com/nchem/journal/vaop/ncurrent/abs/nchem.610.html
Version française:
http://www.salledepresse.uqam.ca/communiques-de-presse-2010/147-recherche-piles-solaires.html

Information:
Professor Benoît Marsan
Department of Chemistry
Université du Québec à Montréal
Phone: 514 987-3000, ext. 7980
Email: marsan.benoit@uqam.ca
Source: Claire Bouchard, Press Relations Officer
Phone: 514 987-3000, ext. 2248
Email: bouchard.claire@uqam.ca

Claire Bouchard | EurekAlert!
Further information:
http://www.uqam.ca

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>