Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solar Cells: UQAM researcher solves two 20-year-old problems

Thanks to two technologies developed by Professor Benoît Marsan and his team at the Université du Québec à Montréal (UQAM) Chemistry Department, the scientific and commercial future of solar cells could be totally transformed.

Professor Marsan has come up with solutions for two problems that, for the last twenty years, have been hampering the development of efficient and affordable solar cells. His findings have been published in two prestigious scientific journals, the Journal of the American Chemical Society (JACS) and Nature Chemistry.

The untapped potential of solar energy
The Earth receives more solar energy in one hour than the entire planet currently consumes in a year! Unfortunately, despite this enormous potential, solar energy is barely exploited. The electricity produced by conventional solar cells, composed of semiconductor materials like silicon, is 5 or 6 times more expensive than from traditional energy sources, such as fossil fuels or hydropower. Over the years, numerous research teams have attempted to develop a solar cell that would be both efficient in terms of energy and inexpensive to produce.
Dye-sensitized solar cells
One of the most promising solar cells was designed in the early '90s by Professor Michael Graetzel of the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland. Based on the principle of photosynthesis—the biochemical process by which plants convert light energy into carbohydrate (sugar, their food)—the Graetzel solar cell is composed of a porous layer of nanoparticles of a white pigment, titanium dioxide, covered with a molecular dye that absorbs sunlight, like the chlorophyll in green leaves. The pigment-coated titanium dioxide is immersed in an electrolyte solution, and a platinum-based catalyst completes the package.

As in a conventional electrochemical cell (such as an alkaline battery), two electrodes (the titanium dioxide anode and the platinum cathode in the Graetzel cell) are placed on either side of a liquid conductor (the electrolyte). Sunlight passes through the cathode and the electrolyte, and then withdraws electrons from the titanium dioxide anode, a semiconductor at the bottom of the cell. These electrons travel through a wire from the anode to the cathode, creating an electrical current. In this way, energy from the sun is converted into electricity.

Most of the materials used to make this cell are low-cost, easy to manufacture and flexible, allowing them to be integrated into a wide variety of objects and materials. In theory, the Graetzel solar cell has tremendous possibilities. Unfortunately, despite the excellence of the concept, this type of cell has two major problems that have prevented its large-scale commercialisation:

The electrolyte is: a) extremely corrosive, resulting in a lack of durability; b) densely coloured, preventing the efficient passage of light; and c) limits the device photovoltage to 0.7 volts.

The cathode is covered with platinum, a material that is expensive, non-transparent and rare. Despite numerous attempts, until Professor Marsan's recent contribution, no one had been able to find a satisfactory solution to these problems.

Professor Marsan's solutions
Professor Marsan and his team have been working for several years on the design of an electrochemical solar cell. His work has involved novel technologies, for which he has received numerous patents. In considering the problems of the cell developed by his Swiss colleague, Professor Marsan realized that two of the technologies developed for the electrochemical cell could also be applied to the Graetzel solar cell, specifically:
For the electrolyte, entirely new molecules have been created in the laboratory whose concentration has been increased through the contribution of Professor Livain Breau, also of the Chemistry Department. The resulting liquid or gel is transparent and non-corrosive and can increase the photovoltage, thus improving the cell's output and stability.
For the cathode, the platinum can be replaced by cobalt sulphide, which is far less expensive. It is also more efficient, more stable and easier to produce in the laboratory.

Immediately following their publication in JACS and Nature Chemistry, Professor Marsan's proposals were received enthusiastically by the scientific community. Many view his contribution as a major research breakthrough on the production of low-cost and efficient solar cells.

Links to the articles in JACS and Nature Chemistry:
Version française:

Professor Benoît Marsan
Department of Chemistry
Université du Québec à Montréal
Phone: 514 987-3000, ext. 7980
Source: Claire Bouchard, Press Relations Officer
Phone: 514 987-3000, ext. 2248

Claire Bouchard | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>