Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shoe Strings and Egg Openers - Max Planck Scientists Discover Photosynthesis Helper Protein

07.11.2011
Photosynthesis is one of the most important biological processes. However, it is less efficient in plants than it could be.

Red algae, in contrast, use a slightly different mechanism and are thus more productive. Scientists from the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich have now identified a so far unknown helper protein for photosynthesis in red algae. “We could elucidate its structure and its intriguing mechanism,” says Manajit Hayer-Hartl, MPIB group leader. “Comparing its mechanism to the one in green plants could help to design more efficient plants.” Their work has led to two recent publications in Nature and Nature Structural & Molecular Biology.


The helper protein (blue) pulls at one end of Rubisco (multicolored) and thus, releases the sugar. The blockade is lifted. Graphic: Manajit Hayer-Hartl / Copyright: Max Planck Institute of Biochemistry

Green plants, algae and plankton metabolize carbon dioxide (CO2) and water into oxygen and sugar in the presence of light. Without this process called photosynthesis, today’s life on earth would not be possible. The key protein of this process, called Rubisco, is thus one of the most important proteins in nature. It bonds with carbon dioxide and starts its conversion into sugar and oxygen.

„Despite its fundamental importance, Rubisco is an enzyme fraught with shortcomings“, says Manajit Hayer-Hartl, head of the Research Group “Chaperonin-assisted Protein Folding” at the MPIB. One of the problems is that Rubisco binds to wrong sugar molecules that inhibit its activity. The inhibitors have to be removed by a special helper protein, called Rubisco activase. The Max Planck scientists now discovered that during evolution two different Rubisco activases developed in plants and in red algae. They differ in structure and in their working mechanism.

Two Ways of Restoring Activity
The newly discovered Rubisco activase in red algae repairs useless Rubisco proteins by pulling on one end of the protein, like someone who opens a shoe string. In doing so, the helper protein opens the active center of Rubisco and releases the inhibitory sugar. The respective Rubisco activase in green plants works more like an egg opener, squeezing the inactive Rubisco protein and forcing it to let go off the sugar molecules. “Understanding the structure and function of the two activase helper proteins should facilitate efforts in biotechnology to generate plants and microorganisms that are able to convert more CO2 into valuable biomass than nature does,” hopes Manajit Hayer-Hartl.
Original Publications:
O. Mueller-Cajar, M. Stotz, P. Wendler, F. U. Hartl, A. Bracher & M. Hayer-Hartl: Structure and function of the AAA1protein CbbX, a red-type Rubisco activase. Nature, November 2, 2011

M. Stotz, O. Mueller-Cajar, S. Ciniawsky, P. Wendler, F. U. Hartl, A. Bracher & M. Hayer-Hartl: Structure of green-type Rubisco activase from tobacco. Nature Structural & Molecular Biology, November 6, 2011

Contact:
Dr. Manajit Hayer-Hartl
Chaperonin-assisted Protein Folding
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mhartl@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/hayer-hartl

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>