Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shoe Strings and Egg Openers - Max Planck Scientists Discover Photosynthesis Helper Protein

07.11.2011
Photosynthesis is one of the most important biological processes. However, it is less efficient in plants than it could be.

Red algae, in contrast, use a slightly different mechanism and are thus more productive. Scientists from the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich have now identified a so far unknown helper protein for photosynthesis in red algae. “We could elucidate its structure and its intriguing mechanism,” says Manajit Hayer-Hartl, MPIB group leader. “Comparing its mechanism to the one in green plants could help to design more efficient plants.” Their work has led to two recent publications in Nature and Nature Structural & Molecular Biology.


The helper protein (blue) pulls at one end of Rubisco (multicolored) and thus, releases the sugar. The blockade is lifted. Graphic: Manajit Hayer-Hartl / Copyright: Max Planck Institute of Biochemistry

Green plants, algae and plankton metabolize carbon dioxide (CO2) and water into oxygen and sugar in the presence of light. Without this process called photosynthesis, today’s life on earth would not be possible. The key protein of this process, called Rubisco, is thus one of the most important proteins in nature. It bonds with carbon dioxide and starts its conversion into sugar and oxygen.

„Despite its fundamental importance, Rubisco is an enzyme fraught with shortcomings“, says Manajit Hayer-Hartl, head of the Research Group “Chaperonin-assisted Protein Folding” at the MPIB. One of the problems is that Rubisco binds to wrong sugar molecules that inhibit its activity. The inhibitors have to be removed by a special helper protein, called Rubisco activase. The Max Planck scientists now discovered that during evolution two different Rubisco activases developed in plants and in red algae. They differ in structure and in their working mechanism.

Two Ways of Restoring Activity
The newly discovered Rubisco activase in red algae repairs useless Rubisco proteins by pulling on one end of the protein, like someone who opens a shoe string. In doing so, the helper protein opens the active center of Rubisco and releases the inhibitory sugar. The respective Rubisco activase in green plants works more like an egg opener, squeezing the inactive Rubisco protein and forcing it to let go off the sugar molecules. “Understanding the structure and function of the two activase helper proteins should facilitate efforts in biotechnology to generate plants and microorganisms that are able to convert more CO2 into valuable biomass than nature does,” hopes Manajit Hayer-Hartl.
Original Publications:
O. Mueller-Cajar, M. Stotz, P. Wendler, F. U. Hartl, A. Bracher & M. Hayer-Hartl: Structure and function of the AAA1protein CbbX, a red-type Rubisco activase. Nature, November 2, 2011

M. Stotz, O. Mueller-Cajar, S. Ciniawsky, P. Wendler, F. U. Hartl, A. Bracher & M. Hayer-Hartl: Structure of green-type Rubisco activase from tobacco. Nature Structural & Molecular Biology, November 6, 2011

Contact:
Dr. Manajit Hayer-Hartl
Chaperonin-assisted Protein Folding
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mhartl@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/hayer-hartl

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>