Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shining a light on trypanosome reproduction

18.02.2011
Compelling visual evidence of sexual reproduction in African trypanosomes, single-celled parasites that cause major human and animal diseases, has been found by researchers from the University of Bristol.

The research could eventually lead to new approaches for controlling sleeping sickness in humans and wasting diseases in livestock which are caused by trypanosomes carried by the bloodsucking tsetse fly.

Biologists believe that sexual reproduction evolved very early and is now ubiquitous in organisms with complex cell structure (the eukaryotes, essentially all living organisms except bacteria). However, real evidence is lacking for a large section of the evolutionary tree.

Trypanosomes represent an early and very distant branch of the eukaryote tree of life and until now it was unclear whether they do indeed reproduce sexually.

Offspring that result from sexual reproduction inherit half their genetic material from each parent. At the core of this process is meiosis, the cellular division that shuffles the parental genes and deals them out in new combinations to the offspring. In organisms which cause diseases, sexual reproduction can spread genes which make them more virulent, or resistant to drugs used for treatment, as well as creating completely new strains with combinations of genes not previously encountered.

Some time ago it was shown that genetic shuffling could occur when two different trypanosome strains were mixed in the tsetse fly, but it was far from clear that this was true sexual reproduction. Direct visualization of the process was difficult because it happened inside the insect.

To get round this problem, Professor Wendy Gibson and colleagues used fluorescently-tagged proteins to make trypanosomes light up like tiny light bulbs [see image]. The tagged proteins only function during meiosis in other well-studied eukaryotes such as yeast.

Professor Gibson said: “It seems that meiosis in trypanosomes has eluded observers because it occurs hidden inside the insect carrying the parasite – a difficult and technically challenging system to work with. These new results will further our understanding of events at the very beginning of eukaryote evolution, and of the way that new strains of disease-causing microbes emerge.”

The study, carried out by researchers from Bristol’s Schools of Biological Sciences and Veterinary Sciences in collaboration with the University of Cambridge, is published this week in Proceedings of the National Academy of Sciences (PNAS).

The research was funded by the Wellcome Trust.

Paper

‘Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly’ by Lori Peacock, Vanessa Ferris, Reuben Sharma, Jack Sunter, Mick Bailey, Mark Carrington and Wendy Gibson in PNAS Early Edition doi/10.1073/pnas.1019423108

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>