Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaping the way we move

10.11.2009
In a paper to appear in Nature Neuroscience, researchers at the RIKEN Brain Science Institute challenge conventional thinking on neuron function and shed light on the mechanisms governing self-initiated voluntary movement.

A new experimental technique for measuring neural activation patterns in moving rats has clarified the function of excitatory and inhibitory neurons in the brain’s motor cortex. In a paper to appear in Nature Neuroscience, researchers at the RIKEN Brain Science Institute challenge conventional thinking on neuron function and shed light on the mechanisms governing self-initiated voluntary movement.

When carrying out bodily movements, motor cortex neurons fire before and during motion in a sequence corresponding to the phases of motor preparation, initiation and execution. The dynamics of the complex neural microcircuitry underlying these phases, however, is poorly understood, due to the technical difficulty involved in directly measuring neuron activity in a moving animal.

To overcome this difficulty, the researchers applied new techniques enabling them to record the firing activity and accurately determine the location and identity of individual neurons in the motor cortex of moving rats. Analyzing location and timing data, they were able to identify a key difference between neuron types: whereas excitatory pyramidal cells in all cortical layers fired during every phase of movement, fast-spiking (FS) interneurons, the most prevalent type of inhibitory neurons, fired only during motor execution.

These results suggest that FS interneurons, rather than functioning as a “gate” as typically conceived, act instead to shape and temporally sharpen motor commands via inhibition. While challenging conventional ideas on how cortical motor information is processed, this discovery also promises advancements in the treatment of brain damage and in the development of cutting-edge Brain Machine Interface (BMI) technology.

For more information, please contact:

Dr. Tomoki Fukai
Dr. Yoshikazu Isomura
Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute
Tel: +81-(0)48-462-1111 (ext. 7463) / Fax: +81-(0)48-467-6899
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-467-9443
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>