Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaping up for cell division

07.11.2011
Preparing chromosomes for cell division is a balancing act involving a tug-of-war between opposing molecular actions

The shape of chromosomes is determined by the relative levels of key protein complexes, research conducted by Keishi Shintomi and Tatsuya Hirano of the RIKEN Advanced Science Institute has shown.


Figure 1: Mitotic chromosomes assembled in the Xenopus cell-free system. Condensin I (green) and II (magenta) display distinct localizations within the chromosomes.
Copyright : 2011 Tatsuya Hirano

As a cell prepares to divide via the process called mitosis, chromatin—the material in which DNA is packaged—condenses to form discrete rod-shaped structures called chromosomes. Each chromosome contains duplicated chromatids—sister chromatids—that are aligned in parallel. After ‘mitotic chromosome condensation’ is complete, the paired chromatids segregate such that each daughter cell receives one of each pair.

“For well over a century, biologists have noticed that the shape of condensed chromosomes is highly characteristic, but varies among different organisms or among different developmental stages in a single organism,” explains Hirano. “We are interested in understanding how the shape of chromosomes is determined at a molecular level.”

Hirano’s group previously discovered that mitotic chromosome condensation requires the action of two protein complexes, known as condensins I and II. This group and others have shown that a third protein complex called cohesin is responsible for the pairing of sister chromatids within a chromosome.

To test exactly how condensins and cohesin may contribute to shaping of chromosomes, Shintomi and Hirano turned to a cell-free system based on extracts prepared from the eggs of the frog Xenopus laevis. “The Xenopus system perfectly suited our purposes because it enables us to recapitulate many chromosomal events, including chromosome condensation, in a test tube in a cell-cycle regulated manner (Fig. 1),” says Hirano.

To achieve their goal, the researchers then had to develop a series of sophisticated experimental protocols to precisely manipulate the levels of condensins I and II and cohesin present in the extracts.

Under the standard condition, chromosomes assembled in this cell-free system tended to be long and thin, which are general characteristics of chromosomes observed in early embryos. Strikingly, however, when the ratio of condensin I to II was reduced, they became shorter and thicker, being reminiscent of chromosomes observed in later stages of development. Further experiments revealed that cohesin works with condensin I and counteracts condensin II to properly place sister chromatids within a chromosome. Thus, their actions can be likened to a molecular ‘tug-of-war’.

“Our findings demonstrated that chromosome shape is achieved by an exquisite balance between condensin I and II and cohesin,” says Hirano. “Such a concept had been suspected for a long time, but has never been demonstrated so beautifully and convincingly until now.”

The corresponding author for this highlight is based at the Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute

Shintomi, K. & Hirano, T. The relative ratio of condensin I to II determines chromosome shapes. Genes & Development 25, 1464–1469 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>