Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sea squirt offers hope for Alzheimer's sufferers

02.03.2010
New model for testing anti-Alzheimer's drugs: At a pier near you
Alzheimer's disease affects an estimated 27 million people worldwide.

It is the most common form of age-related dementia, possibly the most feared disease of old age. There is no cure, and the available drugs only help to relieve symptoms without slowing progression of the disease.

One of the characteristic changes in the brains of Alzheimer's patients is the accumulation of plaques and tangles; currently, the best hope for curing or at least slowing the disease lies in developing drugs that target this buildup. Some drugs are already in clinical trials, but there is still a pressing need for more research, and for more and better drugs directed against both known and novel targets.

One of the big problems in rapidly screening potentially useful drugs has been the lack of a good model system in which Alzheimer's plaques and tangles appear quickly. However, Mike Virata and Bob Zeller, scientists working at San Diego State University, California, have come up with a new, and perhaps unlikely candidate; the humble sea squirt, Ciona intestinalis. Sea squirts are tunicates, marine organisms protected by an outer hard tunic with a soft body inside.

Adults spend their lives attached to one spot on underwater structures like the pilings of piers, sucking in water through one siphon, filtering out small plants to eat, and squirting the water back out through another siphon. However, as long ago as Darwin, it has been recognized that sea squirts may be our closest invertebrate relatives; in their immature, tadpole form, they resemble proper vertebrates, and they share about 80% of their genes with us.

Bob Zeller has been a fan of sea squirt tadpoles since starting work with them in the 1990s, when he helped develop a way of introducing foreign DNA into fertilized sea squirt eggs with almost 100% efficiency, opening the way for their use as model organisms. He and his colleague Mike Virata decided to see whether it would be possible to model Alzheimer's disease in the tiny animals, which share all the genes needed for the development of Alzheimer's plaques in humans. Incredibly, dosing the sea squirt tadpoles with a mutant protein found in human families with hereditary Alzheimer's resulted in aggressive development of plaques in the tadpoles' brains in only a day, and these, along with the accompanying behavioral defects seen in the tadpoles, could be reversed by treating with an experimental anti-plaque forming drug.

This is an important breakthrough, as all other invertebrates tested have been unable to process the plaque-forming protein, and vertebrates take months or years to make plaques. These exciting results make it a real possibility that sea squirts are an excellent model for testing new drugs in the fight against Alzheimer's disease.

Hope for Alzheimer's sufferers from an unlikely source: the sea squirt is presented in the Research Article entitled 'Ascidians: an invertebrate chordate model to study Alzheimer's disease pathogenesis', written by Michael J. Virata and Robert W. Zeller, of San Diego State University, California. The study is published in Volume 3 Issue 5/6 of the research journal, Disease Models & Mechanisms (DMM), http://dmm.biologists.org/, published by The Company of Biologists, a non-profit organisation based in Cambridge, UK.

About Disease Models & Mechanisms:

Disease Models & Mechanisms (DMM) is a new research journal, launched in 2008, that publishes primary scientific research, as well as review articles, editorials, and research highlights. The journal's mission is to provide a forum for clinicians and scientists to discuss basic science and clinical research related to human disease, disease detection and novel therapies. DMM is published by the Company of Biologists, a non-profit organization based in Cambridge, UK.

The Company also publishes the international biology research journals Development, Journal of Cell Science, and The Journal of Experimental Biology. In addition to financing these journals, the Company provides grants to scientific societies and supports other activities including travelling fellowships for junior scientists, workshops and conferences. The world's poorest nations receive free and unrestricted access to the Company's journals.

Kristy Kain | EurekAlert!
Further information:
http://dmm.biologists.org/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>