Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists watch cell-shape process for first time

11.10.2010
Researchers at the Carnegie Institution for Science, with colleagues at the Nara Institute of Science and Technology, observed for the first time a fundamental process of cellular organization in living plant cells: the birth of microtubules by studying recruitment and activity of individual protein complexes that create the cellular protein network known as the microtubule cytoskeleton—the scaffolding that provides structure and ultimately form and shape to the cell. These fundamental results could be important to agricultural research and are published in the October 10, 2010, early on-line edition of Nature Cell Biology.

All plant and animal cells rely on an elaborate array of molecular rods built from the protein tubulin. These rods, called microtubules, organize the cell and generate forces needed to support cell shape, cell movement, and importantly, cell division.

To perform these tasks, microtubules need to be organized into specific configurations. Animal cells separate their chromosomes during cell division by organizing the microtubules network from centrioles. A big mystery is how plants, which do not have centrioles organize their microtubule network. Understanding these mechanisms of molecular organization is a primary goal of cell biology.

As co-author David Ehrhardt from Carnegie's Department of Plant Biology explained: "In many cells, microtubule arrays are created with aid of a centralized body called a centrosome. Centrosomal arrays have been a focus of research for decades and much is now understood about how these arrays are created and organized by the centrosome. However, many differentiated animal cells, and flowering plant cells have arrays that are created independently of a centrosome. In fact, flowering plants lack centrosomes all together. Although these centrosome arrays are common in nature, they have received less study and their organization mechanisms remain largely mysterious."

The Ehrhardt lab previously found that individual microtubules in plant cell arrays are born at many locations along the inside of the cell membrane, where they are detached from the sites of birth and move along the membrane to interact with other microtubules. A primary challenge for investigating the molecular basis for these processes has been visualization of the protein complexes that give birth to new microtubule polymers.

The Ehrhardt and Hashimoto groups met this challenge by tagging a component of these complexes, known as nucleating complexes, with multiple copies of a fluorescent protein derived from jellyfish. When introduced into plant cells and visualized with highly sensitive spinning disk confocal microscopy, this tagged protein permitted the researchers to observe what happens as the microtubule array is being built.

Ehrhardt continued: "In centrosomal arrays, these nucleating complexes are recruited to the centrosome, where they give rise to a star-shaped array centered near the nucleus. By contrast, in the cells we studied these complexes were distributed at the cell membrane and were primarily located along the sides of other microtubules, an association that was correlated with their activity. So, microtubules appear to be important for locating and regulating their own formation proteins. In addition, daughter microtubules were created either at a distinct angle to the mother polymer, or in parallel to it. This choice of angle may play a role in either creating new organizational states or maintaining an existing one."

The investigators observed that formation complexes frequently did not remain in place after creating new microtubules, but often left, presumably to go through a new cycle of microtubule creation at a new location. The scientists hypothesized that liberation of the complexes from mother microtubules might be related to the mechanism of daughter microtubule detachment from origination sites.

To explore these questions, the investigators introduced their probe into a mutant lacking the protein katanin (named for a Japanese word for sword), whose job it is to cut microtubules into pieces. The scientists thought that katanin might be responsible for separating new microtubules from their formation complexes. In fact, without the cutting protein, the daughter microtubules completely failed to detach from their birth sites, and tagged formation complexes remained at the base of the daughter microtubule. The only time they saw a formation complex leave in the mutants was when the microtubule completely depolymerized—that is, the process whereby a large molecule decomposes into individual units. When this occurred, the tagged complex also disappeared. The results indicate that the formation complexes remain associated with mother microtubules until the daughter microtubule is removed either by katanin cutting or by complete depolymerization.

"As far as we are aware, this research is the first to witness the dynamics of individual gamma tubulin complex processes, which are fundamental to every plant and animal," remarked Ehrhardt. "We look at our plant system as a model for non-centrosomal array organization, which also occurs in many important differentiated animal cells. While we anticipate that some of the molecular players may be different, many of the principles may be similar. What we learn here could help us understand basic mechanisms underlying crop plant growth and development, and could have implications for understanding the process of acquiring cell shape and function of human cells."

*Authors on the paper are Masayoshi Nakamura of the Nara Institute of Science and Technology; David Ehrhardt of Carnegie; and Takashi Hashimoto of Nara and Stanford University. The work was partially supported by the Carnegie Institution for Science, the Japanese NARA Institute of Science and Technology and the Ministry of Education, Culture, Sports, Science and Technology.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

David Ehrhardt | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>