Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover molecular pathway for organ tissue regeneration and repair

16.02.2010
Scientists have discovered a molecular pathway that works through the immune system to regenerate damaged kidney tissues and may lead to new therapies for repairing injury in a number of organs systems.

The findings, reported in this week's Proceedings of the National Academy of Sciences (PNAS), come from collaborative research led by Cincinnati Children's Hospital Medical Center and the Brigham & Women's Hospital of Harvard Medical School.

The study may have significant medical ramifications as currently there are no effective treatments for acute kidney injury – a growing problem in hospitals and clinics, according to the study's senior co-authors, Richard Lang, Ph.D., a researcher in the divisions of Pediatric Ophthalmology and Developmental Biology at Cincinnati Children's, and Jeremy Duffield, M.D., Ph.D., a researcher at Brigham and Women's Hospital. Acute kidney injury is a significant cause of kidney disease, cardiovascular complications and early death, affecting as many as 16 million children and adults in the United States.

The new molecular repair pathway involves white blood cells called macrophages – part of the immune system – that respond to tissue injury by producing a protein called Wnt7b. Scientists identified the macrophage-Wnt7b pathway during experiments in mice with induced kidney injury. Wnt7b is already known to be important to the formation of kidney tissues during embryonic organ development. In this study the scientists found the protein helped initiate tissue repair and regeneration in injured kidneys.

"Our findings suggest that by migrating to the injured kidney and producing Wnt7b, macrophages are re-establishing an early molecular program for organ development that also is beneficial to tissue repair," said Dr. Lang. "This study also indicates the pathway may be important to tissue regeneration and repair in other organs."

Wnt7b is part of the Wnt family of proteins, which are known to help regulate cells as they proliferate, grow and become specific cell types for the body. Wnt proteins have also been linked to the regulation of stem cells in bone marrow and skin, which suggested to researchers of the current study that Wnt might have a role in tissue regeneration.

The researchers conducted a number of experiments of kidney injury in mice to identify the repair pathway, finding that:

Silencing macrophage white blood cells through a process called ablation reduced the response level of Wnt proteins to injured kidney cells.

Deleting the Wnt7b protein from macrophages diminished normal tissue repair functions in injured kidneys.

Injecting into the injured kidneys a protein calked Dkk2, which interacts with and is known to help regulate the Wnt pathway during embryonic development, enhanced the macrophage-Wnt7b repair process. It also restored epithelial surface cells that line internal kidney surfaces and suggested a therapeutic potential for the pathway.

Drs. Lang and Duffield said the repair pathway may benefit other injured organs because macrophages act somewhat like a universal emergency responder in the body, rushing to injured tissues wherever damage occurs. Another factor is the central role the Wnt pathway plays in cell regulation and function throughout the body.

Other collaborating institutions in the study include: the Department of Structural Biology , St, Jude Children's Hospital, Memphis, Tenn.; the departments of Internal Medicine and Molecular Biology, University of Texas Southwest Medical Center; Department of Molecular and Developmental Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, N.Y.; Department of Molecular and Cellular Biology, Harvard University; the Visual Systems Group in the division of Pediatric Ophthalmology at Cincinnati Children's; and the Department of Ophthalmology, University of Cincinnati.

Funding support came from the National Institutes of Health, the American Society of Nephrology Gottschalk Award, the Genzyme Renal Initiatives Program, a National Taiwan Merit Award, and the Abrahamson Pediatric Eye Institute Endowment at Cincinnati Children's.

Nick Miller | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>