Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a novel method to suppress malaria parasite’s virulence genes, break the code of its immune evasion

26.02.2015

Revealed: how malaria evades the immune response by using long noncoding RNA to express one gene while silencing others

Up to one million people - mainly pregnant woman and young children - are killed each year by the Plasmodium falciparum parasite, which causes the most devastating form of human malaria.


Prof. Ron Dzikowski and PhD student Inbar Amit-Avraham at the Hebrew University of Jerusalem (Photo: Hebrew University of Jerusalem)

Now, researchers at the Hebrew University of Jerusalem have revealed the genetic trickery this deadly parasite deploys to escape attack by the human immune system.

The parasite is known to replicate within the circulating blood of infected individuals and modify the surface of infected red blood cells. Its virulence comes from its impressive ability to hide from the immune system by selectively changing which surface proteins it displays.

This sophisticated game of hide-and-seek, which involves continually alternating the foreign molecules, called antigens, that can trigger an immune response, is called antigenic variation.

Previous research has shown that the antigens the parasite selectively displays are encoded by members of a gene family named var. The parasite tightly regulates the expression of these var genes so that only one is expressed at any given time, while the rest of the family is maintained silent.

Understanding this complex mechanism is essential to understanding how the deadly Plasmodium falciparum parasite evades the immune system. It is also more broadly important to science because the process by which cells can express a single gene while keeping alternative genes silent is one of the unsolved mysteries in the field of eukaryotic gene expression.

In research at the Hebrew University’s Faculty of Medicine, Prof. Ron Dzikowski and his PhD student Inbar Amit-Avraham found that at the precise moment in the cell cycle when a specific var gene is active, corresponding RNA molecules (of a type called long noncoding RNA) are present.

Furthermore, these long noncoding RNA (lncRNAs) molecules incorporate themselves into DNA structures, and determine how the parasite selects a single gene for expression while the rest of the family is kept silent.

In a series of genetic experiments in transgenic parasite lines, the researchers were able to activate silent var genes by expressing their specific lncRNAs molecules, thus demonstrating their functional role in var gene activation.

The research was conducted at the Department of Microbiology and Molecular Genetics at the Institute for Medical Research Israel-Canada, in the Hebrew University’s Faculty of Medicine; and at the Sanford F. Kuvin Center for the Study of Infectious and Tropical Diseases at the Hebrew University-Hadassah Medical School.

In a further development, the researchers collaborated with Dr. Eylon Yavin, at the Institute for Drug Research in the Hebrew University’s School of Pharmacy, to develop a novel way to interfere with these lncRNAs. They further showed that through this interference they could suppress the active var gene, erase the memory that regulates var expression, and induce switching towards expression of other var genes.

The research provides evidence that these lncRNAs molecules play a key role in regulating the genetic mechanisms enabling the deadly parasite to evade human immunity.

According to Prof. Dzikowski, “We believe this breakthrough has exposed the tip of the iceberg in understanding how the deadliest malaria parasite regulates the selective expression of its genes, enabling it to evade the immune system. Understanding the mechanisms by which the parasite evades immunity takes us closer to finding ways to either block this ability, or force the parasite to expose its entire antigenic repertoire and thus allow the human immune system to overcome the disease. Such findings can help pave the way for development of new therapies and vaccines for malaria.”

The study appears in the Proceedings of the National Academy of Sciences (PNAS Early Edition) as Amit-Avraham et al., “Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum” ( www.pnas.org/cgi/doi/10.1073/pnas.1420855112  ).

The research was supported by Israel Academy of Science and Humanities and European Research Council. Inbar Amit-Avraham was supported by the Abisch–Frenkel Foundation.

For information or interviews, contact:

Dov Smith
Hebrew University Foreign Press Liaison
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>