Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a novel method to suppress malaria parasite’s virulence genes, break the code of its immune evasion

26.02.2015

Revealed: how malaria evades the immune response by using long noncoding RNA to express one gene while silencing others

Up to one million people - mainly pregnant woman and young children - are killed each year by the Plasmodium falciparum parasite, which causes the most devastating form of human malaria.


Prof. Ron Dzikowski and PhD student Inbar Amit-Avraham at the Hebrew University of Jerusalem (Photo: Hebrew University of Jerusalem)

Now, researchers at the Hebrew University of Jerusalem have revealed the genetic trickery this deadly parasite deploys to escape attack by the human immune system.

The parasite is known to replicate within the circulating blood of infected individuals and modify the surface of infected red blood cells. Its virulence comes from its impressive ability to hide from the immune system by selectively changing which surface proteins it displays.

This sophisticated game of hide-and-seek, which involves continually alternating the foreign molecules, called antigens, that can trigger an immune response, is called antigenic variation.

Previous research has shown that the antigens the parasite selectively displays are encoded by members of a gene family named var. The parasite tightly regulates the expression of these var genes so that only one is expressed at any given time, while the rest of the family is maintained silent.

Understanding this complex mechanism is essential to understanding how the deadly Plasmodium falciparum parasite evades the immune system. It is also more broadly important to science because the process by which cells can express a single gene while keeping alternative genes silent is one of the unsolved mysteries in the field of eukaryotic gene expression.

In research at the Hebrew University’s Faculty of Medicine, Prof. Ron Dzikowski and his PhD student Inbar Amit-Avraham found that at the precise moment in the cell cycle when a specific var gene is active, corresponding RNA molecules (of a type called long noncoding RNA) are present.

Furthermore, these long noncoding RNA (lncRNAs) molecules incorporate themselves into DNA structures, and determine how the parasite selects a single gene for expression while the rest of the family is kept silent.

In a series of genetic experiments in transgenic parasite lines, the researchers were able to activate silent var genes by expressing their specific lncRNAs molecules, thus demonstrating their functional role in var gene activation.

The research was conducted at the Department of Microbiology and Molecular Genetics at the Institute for Medical Research Israel-Canada, in the Hebrew University’s Faculty of Medicine; and at the Sanford F. Kuvin Center for the Study of Infectious and Tropical Diseases at the Hebrew University-Hadassah Medical School.

In a further development, the researchers collaborated with Dr. Eylon Yavin, at the Institute for Drug Research in the Hebrew University’s School of Pharmacy, to develop a novel way to interfere with these lncRNAs. They further showed that through this interference they could suppress the active var gene, erase the memory that regulates var expression, and induce switching towards expression of other var genes.

The research provides evidence that these lncRNAs molecules play a key role in regulating the genetic mechanisms enabling the deadly parasite to evade human immunity.

According to Prof. Dzikowski, “We believe this breakthrough has exposed the tip of the iceberg in understanding how the deadliest malaria parasite regulates the selective expression of its genes, enabling it to evade the immune system. Understanding the mechanisms by which the parasite evades immunity takes us closer to finding ways to either block this ability, or force the parasite to expose its entire antigenic repertoire and thus allow the human immune system to overcome the disease. Such findings can help pave the way for development of new therapies and vaccines for malaria.”

The study appears in the Proceedings of the National Academy of Sciences (PNAS Early Edition) as Amit-Avraham et al., “Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum” ( www.pnas.org/cgi/doi/10.1073/pnas.1420855112  ).

The research was supported by Israel Academy of Science and Humanities and European Research Council. Inbar Amit-Avraham was supported by the Abisch–Frenkel Foundation.

For information or interviews, contact:

Dov Smith
Hebrew University Foreign Press Liaison
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>