Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientific journal Nature: researchers publish results of an iron fertilisation experiment

An international research team has published the results of an ocean iron fertilization experiment (EIFEX) carried out in 2004 in the current issue of the scientific journal Nature.

Unlike the LOHAFEX experiment carried out in 2009, EIFEX has shown that a substantial proportion of carbon from the induced algal bloom sank to the deep sea floor. These results, which were thoroughly analyzed before being published now, provide a valuable contribution to our better understanding of the global carbon cycle.

An international team on board the research vessel Polarstern fertilized in spring 2004 (i.e. at the end of the summer season in the southern hemisphere) a part of the closed core of a stable marine eddy in the Southern Ocean with dissolved iron, which stimulated the growth of unicellular algae (phytoplankton). The team followed the development of the phytoplankton bloom for five weeks from its start to its decline phase. The maximum biomass attained by the bloom was with a peak chlorophyll stock of 286 Milligram per square metre higher than that of blooms stimulated by the previous 12 iron fertilization experiments.

According to Prof. Dr. Victor Smetacek and Dr. Christine Klaas from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, this was all the more remarkable because the EIFEX bloom developed in a 100 metre deep mixed layer which is much deeper than hitherto believed to be the lower limit for bloom development.

The bloom was dominated by diatoms, a group of algae that require dissolved silicon to make their shells and are known to form large, slimy aggregates with high sinking rates at the end of their blooms. “We were able to prove that over 50 per cent of the plankton bloom sank below 1000 metre depth indicating that their carbon content can be stored in the deep ocean and in the underlying seafloor sediments for time scales of well over a century“, says Smetacek.

These results contrast with those of the LOHAFEX experiment carried out in 2009 where diatom growth was limited by different nutrient conditions, especially the absence of dissolved silicon in the chosen eddy. Instead, the plankton bloom consisted of other types of algae which, however, have no protective shell and were eaten more easily by zooplankton. “This shows how differently communities of organisms can react to the addition of iron in the ocean“, says Dr. Christine Klaas. “We expect similarly detailed insights on the transportation of carbon between atmosphere, ocean and sea bottom from the further scientific analysis of the LOHAFEX data”, adds Prof. Dr. Wolf-Gladrow, Head of Biosciences at the Alfred Wegener Institute, who is also involved in the Nature study.

Iron plays an important role in the climate system. It is involved in many biochemical processes such as photosynthesis and is hence an essential element for biological production in the oceans and, therefore, for CO2 absorption from the atmosphere. During past ice ages the air was cooler and drier than it is today and more iron-containing dust was transported from the continents to the ocean by the wind. The iron supply to marine phytoplankton was hence higher during the ice ages. This natural process is simulated in iron fertilisation experiments under controlled conditions.

“Such controlled iron fertilization experiments in the ocean enable us to test hypotheses and quantify processes that cannot be studied in laboratory experiments. The results improve our understanding of processes in the ocean relevant to climate change“, says Smetacek. “The controversy surrounding iron fertilization experiments has led to a thorough evaluation of our results before publication", comments the marine scientist as an explanation for the long delay between the experiment to the current publication in Nature.

Original publication:
Victor Smetacek, Christine Klaas et al. (2012): Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature doi:10.1038/nature11229
Summary of the experiment:
A patch of 150 square kilometres (circle with a diameter of 14 kilometres) within an marine eddy of the Antarctic Circumpolar Current was fertilized with seven tonnes of iron sulphate on 13/14 February 2004. This corresponds to an iron addition of one hundredth of a gramme per square metre. The resultant iron concentration of 2 nanomole per litre is similar to values measured in the wake of melting icebergs; the iron concentrations in coastal regions tend to be much higher.

The input of iron in regions with high nutrient concentrations (nitrate, phosphate, silicate) and low chlorophyll content (the so-called high-nutrient / low-chlorophyll regions) stimulates the growth of plankton algae (phytoplankton). After fertilization, the development of the plankton bloom was investigated using standard oceanographic methods over a period of five weeks. From the surface water down to a depth of over 3,000 metres, chlorophyll, organic carbon, nitrogen, phosphate and other parameters were measured to follow the development, demise and sinking of the bloom and the associated export of carbon. In addition, the phytoplankton and zooplankton species and bacterial numbers and abundance were determined. The chlorophyll content rose over a period of 24 days after fertilization. Thereafter, phytoplankton aggregates formed and sank within a few days to depths of 3,700 metres. Long spines of these diatoms and mucous substances led to aggregate formation and export of the fixed carbon from the surface to the sea floor. This process was monitored for five weeks after the start of fertilisation.

Caution BLOCKING PERIOD – embargoed until Wednesday, 18th July 2012, 1900 Berlin time (1800 London time, 1300 Eastern time)

Information for editors:

Until the embargo ends, printable images are available at, afterwards you will find them at

An interview about the general scientific motives of iron fertilization experiments with the AWI’s environmental policy spokesman Dr. Stefan Hain is available at

Your AWI contact partners for questions in regard to the scientific results and methods are Prof. Dr. Victor Smetacek (+49 (0)471 4831-1440; email:, available for interviews in German and English), Dr. Christine Klaas (+49 (0)471 4831-1440; email: and Prof. Dr. Dieter Wolf-Gladrow (+49 (0)471 4831-1824; email:

Your contact partner for general and strategic questions about iron fertilisation experiments is Prof. Karin Lochte, scientific director of the Alfred Wegener Institute. You may reach her via Dr. Folke Mehrtens in the Communications and Media Department (Tel.: +49 (0)471 4831-2007; email:

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>