Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Get First Look at the Mechanics of Membrane Proteins

18.04.2011
In two new studies, researchers provide the first detailed view of the elaborate chemical and mechanical interactions that allow the ribosome – the cell’s protein-building machinery – to insert a growing protein into the cellular membrane.

The first study, in Nature Structural and Molecular Biology, gives an atom-by-atom snapshot of a pivotal stage in the insertion process: the moment just after the ribosome docks to a channel in the membrane and the newly forming protein winds its way into the membrane where it will reside.

A collaboration between computational theoretical scientists at the University of Illinois and experimental scientists at University of Munich made this work possible. Using cryo-electron microscopy to image one moment in the insertion process, the researchers in Munich were able to get a rough picture of how the many individual players – the ribosome, membrane, membrane channel and newly forming protein – come together to get the job done. Each of these structures had been analyzed individually, but no previous studies had succeeded in imaging all of their interactions at once.

“The computational methodology contributed by the Illinois group was crucial in interpreting the new cryo-EM reconstruction in terms of an atomic level structure, and testing the interpretation through simulation,” said co-author Roland Beckmann at the University of Munich. “Our joint study is unique in so closely and successfully combining experimental and computational approaches.”

To image the ribosome’s interaction with the membrane, Beckmann’s team used small disks of membrane held together with belts of engineered lipoproteins. University of Illinois biochemistry professor Stephen Sligar developed and pioneered the use of these “nanodiscs.”

The Illinois team used the cryo-EM images as well as detailed structural information about the ribosome and other molecules to construct an atom-by-atom model of the whole system and “fit the proteins into the fuzzy images of the electron microscope,” said University of Illinois physics and biophysics professor Klaus Schulten, who led this part of the analysis with postdoctoral researcher James Gumbart.

“The ribosome with the membrane and the other components is a simulation of over 3 million atoms,” Schulten said, a feat accomplished with powerful computers and “over 20 years of experience developing software for modeling biomolecules.” (Schulten is principal investigator of the NIH-funded Resource for Macromolecular Modeling and Bioinformatics at Illinois, which supports the study of large molecular complexes in living cells, with a special focus on the proteins that mediate the exchange of materials and information across biological membranes.)

This analysis found that regions of the membrane channel actually reach into the ribosome exit to help funnel the emerging protein into the channel. Depending on the type of protein being built, the channel will thread it all the way through the membrane to secrete it or, as in this case, open a “side door” that directs the growing protein into the interior of the membrane, Schulten said. The researchers also saw for the first time that the ribosome appears to interact directly with the membrane surface during this process.

The researchers found that a signal sequence at the start of the growing protein threads through the channel and anchors itself in the membrane. Previous studies suggested that this signaling sequence “tells” the ribosome what kind of protein it is building, directing it to its ultimate destination inside or outside the cell.

“This new work visualizes this process for the first time, giving researchers the first image of how nascent proteins actually get into membranes,” Schulten said. “It’s like going to Mars and being the first to look at Mars.”

In a second study, in the Proceedings of the National Academy of Sciences, Schulten, Gumbart and graduate student Christophe Chipot found that proteins get inserted into the membrane in two stages. First, the ribosome “pushes” the growing protein into the membrane channel, and then, in a second step, the protein enters the membrane.

The original push, driven by the chemical energy that the ribosome harvests from other high-energy molecules in the cell, allows even highly charged proteins to pass easily into the oily, nonpolar environment of the membrane, the researchers found.

Schulten holds the Swanlund Chair in Physics at Illinois and directs the theoretical and computational biophysics group at the Beckman Institute for Advanced Science and Technology.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Mars Mechanics Membrane Protein biological membrane living cell

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>