Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Workings of L-Form Bacteria

14.10.2009
Researchers at the Johns Hopkins Bloomberg School of Public Health have for the first time identified the genetic mechanisms involved in the formation and survival of L-form bacteria. Their findings are described in a study published October 6 in the journal PLoS ONE.

L-form bacteria, which were first discovered in the 1930s, are morphological variants of classical bacteria that lack a cell wall. Under specialized growth conditions L-form bacteria are capable of forming a typical “fried egg” colony, which resembles a fried egg rather than the smooth appearance of a classic bacteria colony.

These bacteria are believed to form in response to cell wall stress from certain antibiotics or the body’s immune attack, and are suspected to be associated with antibiotic-resistant and persistent infections, as well as certain diseases.

“Our study provides new insight about the molecular basis of L-form bacteria, which was not previously known,” said Ying Zhang, MD, PhD, senior author of the study and professor in the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology. “These findings establish the framework for future research on how the identified genes and pathways interact leading to L-forms. They also have important implications for understanding the emergence of antibiotic resistance and bacterial persistence and for developing new drugs and vaccines targeting such persistent L-form bacteria for improved infection control.”

According to Zhang, L-form bacteria are difficult to study because their biology and the circumstances favoring the transition of classical bacteria into L-forms are not fully understood. In addition, specialized culture conditions are required for study. Most research on L-form bacteria was largely abandoned in the 1980s before modern molecular tools could be applied, but renewed interest in L-form bacteria has recently emerged.

For the study, Zhang and colleagues William Glover, a graduate student at the Bloomberg School, and Yanqin Yang, a senior program analyst with the Johns Hopkins School of Medicine, conducted a genome-wide gene expression analysis of L-form colonies of E. coli bacteria. They identified interesting stress genes and pathways that overlap with persisters and biofilm bacteria.

Furthermore, the authors carried out mutant screens and identified three groups of mutants with varying degrees of defect in L-form bacteria formation or survival compared to classic colonies of E. coli. Mutants that showed complete lack of L-form growth belonged to pathways related to cell envelope stress, DNA repair, iron regulation and outer membrane biogenesis. The mutants could be restored to L-form growth by their respective wild type genes, confirming their role in L-form formation or survival.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>