Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify genetic sequence that helps to coordinate synthesis of DNA-packaging proteins

25.03.2013
Every time a cell divides it makes a carbon copy of crucial ingredients, including the histone proteins that are responsible for spooling yards of DNA into tight little coils. When these spool-like proteins aren't made correctly, it can result in the genomic instability characteristic of most birth defects and cancers.

Seven years ago, Dr. Joe Gall of the Carnegie Institute in Baltimore, Md. and coworkers noticed an aggregation of molecules along a a block of genome that codes for the critical histones, but they had no idea how this aggregate or "histone locus body" was formed.


This is a micrograph of a nuclei from a fruit fly salivary gland showing the endogenous histone locus body (large arrow) and HLB formed on the inserted histone genes (small arrow).

Credit: Deirdre Tatomer, UNC Dept. of Biology.

Now, research conducted in fruit flies at the University of North Carolina School of Medicine has pinpointed a specific DNA sequence that both triggers the formation of this "histone locus body" and turns on all the histone genes in the entire block.

The finding, published March 25, 2013 in the journal Developmental Cell, provides a model for the coordinated synthesis of histones needed for assembly into chromatin, a process critical to keeping chromosomes intact and passing genetic information from generation to generation.

"Our study has uncovered a new relationship between nuclear architecture and gene activity," said senior study author Bob Duronio, PhD, professor of biology and genetics at UNC. "In order to make chromosomes properly, you need to make these histone building blocks at the right time and in the right amount. We found that the cell has evolved this complex architecture to do that properly, and that involves an interface between the assembly of various components and the turning on of a number of genes."

In the fruit fly, as in the human, the five different histone genes exist in one long chunk of the genome. The "histone locus" in flies contains 100 copies of each of the five genes, encompassing approximately 500,000 nucleotides of A's, C's, T's and G's. The proteins required for making the histone message – a process that must happen every time a new strand of DNA is copied – come together at this "histone locus" to form the "histone locus body."

Duronio and co-senior study author William Marzluff, PhD, Kenan Distinguished Professor of Biochemistry and Biophysics, wanted to figure out how these factors knew to meet at the histone locus.

They inserted different combinations of the five histone genes into another site of the genome, and looked to see which combinations recruited a new histone locus body. The researchers found that combinations that contained a specific 300 nucleotide sequence – the region between the H3 and H4 histone genes – formed a histone locus body. In contrast, combinations of genes that lacked this sequence did not form the body. They went on to show that this sequence turned on not only the H3 and H4 genes in its direct vicinity, but also other histone genes in the block.

Though the research was conducted entirely in fruit flies, it may lend insight into mechanisms that keep the genome from becoming unstable – and causing early death or illness -- in higher organisms.

"Humans and flies have these very same histone genes. They have the same proteins in the histone locus body. So understanding precisely how this works in flies will help us understand cell division in humans," said Marzluff.

The research was funded by the National Institute of General Medical Sciences, National Institutes of Health. Study co-authors from UNC include Harmony R. Salzler, Deirdre C. Tatomer, Pamela Y. Malek, Stephen L. McDaniel, and Anna N. Orlando.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>