Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers found response of how plants respond to the changing environment in geological time

30.09.2013
Understanding the impact of environmental change on plant traits is an important issue in evolutionary biology.

As the only direct evidence of past life, fossils provide important information on the interactions between plants and environmental change. After ten years' survey, Professor Zhou Zhekun's group from Kunming Institute of Botany has discovered more than ten well preserved Neogene plant fossil sites in southwestern China which are important to understand past climate and response of plants to the changing climate in this region.


1, 3, 5, 7: This is the micro-morphology of fossil Quercus delavayi complex. 2, 4, 6, 8 Micro-morphology of extant Q. delavayi.

Credit: ©Science China Press

Their recent work, entitled "Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene", was published in CHINESE SCIENCE BULLETIN.2013, Vol 58(21).

Comparing closely related fossils from different geological periods is an efficient method to understand how plants respond to climatic change across a large scale. However, few studies have been carried out due to lack of a continuous fossil record. In their recent study, Prof. Zhou's group investigated detailed micro-morphology of a dominant element in Neogene fossil sites, Quercus delavayi complex (one oak species) to answer this question.

Their results show that Quercus delavayi complex from different periods share similar leaf morphology, but differ with respect to trichome and stomatal densities. The stomatal density of the Q. delavayi complex was the highest during the late Miocene, declined in the late Pliocene, and then increased during the present epoch. These values show an inverse relationship with atmospheric CO2 concentrations. Since the late Miocene, a gradual reduction in trichome base density has occurred in this complex. This trend is the opposite of that of precipitation, indicating that increased trichome density is not an adaptation to dry environments. These results are important to understand the relationship between plant evolution and climatic change which are important to predict the fate of current biodiversity in a changing environment.

This research project was partially supported by a grant from the National Natural Science Foundation of China and a 973 grant from Department of Science and Technology of China. Knowledge of the past is crucial to understand the future. The researchers suggest the old subject 'Paleontology' can reveal long term evolution in the past which is hardly seen in 'Neontology' should receive more attention.

See the article: Hu Q, Xing Y W, Hu J J, Huang Y J, Ma H J, Zhou Z K. Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene. Chin Sci Bull, 2013, 58, doi: 10.1007/s11434-013-6005-x

http://csb.scichina.com:8080/kxtb/CN/abstract/abstract511896.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

YAN Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>