Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers found response of how plants respond to the changing environment in geological time

30.09.2013
Understanding the impact of environmental change on plant traits is an important issue in evolutionary biology.

As the only direct evidence of past life, fossils provide important information on the interactions between plants and environmental change. After ten years' survey, Professor Zhou Zhekun's group from Kunming Institute of Botany has discovered more than ten well preserved Neogene plant fossil sites in southwestern China which are important to understand past climate and response of plants to the changing climate in this region.


1, 3, 5, 7: This is the micro-morphology of fossil Quercus delavayi complex. 2, 4, 6, 8 Micro-morphology of extant Q. delavayi.

Credit: ©Science China Press

Their recent work, entitled "Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene", was published in CHINESE SCIENCE BULLETIN.2013, Vol 58(21).

Comparing closely related fossils from different geological periods is an efficient method to understand how plants respond to climatic change across a large scale. However, few studies have been carried out due to lack of a continuous fossil record. In their recent study, Prof. Zhou's group investigated detailed micro-morphology of a dominant element in Neogene fossil sites, Quercus delavayi complex (one oak species) to answer this question.

Their results show that Quercus delavayi complex from different periods share similar leaf morphology, but differ with respect to trichome and stomatal densities. The stomatal density of the Q. delavayi complex was the highest during the late Miocene, declined in the late Pliocene, and then increased during the present epoch. These values show an inverse relationship with atmospheric CO2 concentrations. Since the late Miocene, a gradual reduction in trichome base density has occurred in this complex. This trend is the opposite of that of precipitation, indicating that increased trichome density is not an adaptation to dry environments. These results are important to understand the relationship between plant evolution and climatic change which are important to predict the fate of current biodiversity in a changing environment.

This research project was partially supported by a grant from the National Natural Science Foundation of China and a 973 grant from Department of Science and Technology of China. Knowledge of the past is crucial to understand the future. The researchers suggest the old subject 'Paleontology' can reveal long term evolution in the past which is hardly seen in 'Neontology' should receive more attention.

See the article: Hu Q, Xing Y W, Hu J J, Huang Y J, Ma H J, Zhou Z K. Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene. Chin Sci Bull, 2013, 58, doi: 10.1007/s11434-013-6005-x

http://csb.scichina.com:8080/kxtb/CN/abstract/abstract511896.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

YAN Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>