Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find papillary renal cell carcinoma unresponsive to sunitinib

31.05.2010
Small but decisive study highlights differences in clear- and non-clear cell subtypes

Of the more than 38,000 Americans diagnosed with renal cell carcinoma (RCC) each year, approximately 20 percent have non-clear cell forms of the disease. New findings shows that a non-clear cell form of kidney cancer known as papillary RCC, which accounts for 12 percent of all RCC, responds differently to sunitinib – a standard frontline treatment for RCC.

In a small but decisive Phase II trial, the researchers found that sunitinib was not effective in patients with this form of the disease. The terms clear- and non-clear cell refer to the general appearance of the cancer cells under a microscope.

"With clear-cell RCC, there is a lot of data," said Fox Chase Cancer Center medical oncologist Elizabeth R. Plimack, M.D., M.S., who led the study while at University of Texas MD Anderson Cancer Center and will report the results at the 46th Annual Meeting of the American Society of Clinical Oncology on Monday, June 7.

"Most large studies have involved primarily or exclusively clear-cell patients. Because data on the behavior of non-clear cell kidney cancer is lacking, the disease has been treated similarly to clear cell. Now that we're taking a hard look at how sunitinib works on non-clear cell kidney cancer, we're seeing a lot of differences between the two diseases," says Plimack.

Working with investigators at the University of Texas MD Anderson Cancer Center, Plimack and fellow researchers examined the response and survival rates of 23 patients with papillary RCC who were treated with sunitinib.

The study built upon prior research that showed a high response rate and improved progression-free survival and overall survival in patients with clear-cell RCC who used sunitinib to interfere with the growth of cancers cells, either slowing or stopping the development of tumors.

In the current study, patients with papillary RCC were treated with sunitinib according to a two-stage design. Following the sunitinib regimen, Plimack and her colleagues found no major responses, a median progression free survival of 1.6 months and median overall survival of 10.8 months. The best response was stable disease in eight patients. The results underscore the need to develop more effective therapies for papillary RCC.

"We really need to investigate papillary renal cell carcinoma separately from clear-cell renal cell carcinoma and aggressively pursue new agents for this rare but distinct subtype of renal cell cancer," says Plimack.

Co-authors on the reported study included MD Anderson researchers Eric Jonasch, B Nebiyou Bekele, Xin-Qiao Zhang, C Ng, and NM Tannir. Funding for this investigator-initiated study was provided by Pfizer.

Fox Chase Cancer Center is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, visit Fox Chase's Web site at www.fccc.org or call 1-888-FOX CHASE or (1-888-369-2427).

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.org

Further reports about: Cancer Nobel Prize cell carcinoma kidney cancer renal cell carcinoma

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>