Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find molecular shift that stops stem cells in Drosophila from making tumors

08.12.2015

These precisely timed changes in aging stem cells could provide a path to identifying some cancers and targeting therapies, say University of Oregon scientists

University of Oregon scientists studying neural stem cells in the fruit fly Drosophila have uncovered a molecular change experienced by stem cells as they age. During development of the central nervous system, a protein is expressed that blocks tumor formation.


With the enzyme Eyeless knocked out, cells over-proliferate (shown in green) in a fruit fly's larval brain during reactivated Notch signaling.

Credit: University of Oregon

The research, detailed in a paper placed online ahead of print in the journal Current Biology, focused on the larval stage of fruit fly development. This is when stem cells generate most of the neurons that form the adult's brain. While rapidly dividing to produce new cells, these stem cells rely on the signaling pathway of the Notch protein.

Previous research has shown that when Notch signaling runs smoothly, the stem cells make neurons that populate the adult central nervous system. With too much Notch, stem cells lose control and over-proliferate - forming large tumors. In humans, adult T-cell leukemia is tied to overactive Notch signaling.

"Stem cells have a really tough job, because they have to divide to make the millions of neurons in our brain," said co-author Chris Doe, a professor of biology and a Howard Hughes Medical Institute Investigator based at the UO. "If they don't divide enough, it results in microcephaly or other small brain diseases, but if they divide too much they make tumors. They have to stay right on that boundary of dividing to make neurons but not dividing excessively and forming a tumor. It's really walking a tightrope."

In the new research, UO doctoral student Dylan Farnsworth discovered that if he waited for stem cells to divide a few times and age a bit, they quit responding to Notch. At this point, stem cells cannot be pushed by high doses of Notch signaling to form tumors. He wondered why.

Further study led to the discovery of age-related molecular changes. Late in their lives, and at about the same time they resist tumor formation, stem cells begin expressing a transcription factor protein, known as Eyeless in Drosophila and Pax6 in humans. Its presence blocks Notch signaling, Farnsworth said.

When Eyeless is knocked out in these stem cells, the researchers showed, Notch signaling overwhelms the balance again and forms brain tumors.

"If we can identify the stem cells that are relied upon during development, maybe we could find a way to use them later to re-create conditions that might be therapeutic," Farnsworth said. "If you do it incorrectly, you risk over-proliferation and the development of masses -- and cancer."

Finding this role for Eyeless is a step in that direction, but it's possible that other molecules also are present and may also inhibit tumor growth, Doe said. "This paper shows that Eyeless is important for winding down the lifespan of the stem cells that are giving rise to the adult brain. It's a stop signal that says it is time to cease responding to Notch signals."

While the system used to probe these cells was created for basic science research in Doe's lab, it opens a new window to identify cells involved in the origin of cancers. In this case, tumors induced by Notch signaling in older stem cells were distinct from their earlier versions. Eventually, with more extensive research, the system could provide a roadmap to fine-tuning the timing of stem cell-based therapies to restart healthy activity in adult stem cells, Doe said.

###

Former UO doctoral student Omer Ali Bayraktar, now a postdoctoral fellow in the Department of Regenerative Medicine at the University of California, San Francisco, also was a co-author.

A grant from National Institutes of Health (T32 GM007413) to Farnsworth helped fund the research along with HHMI support to Doe.

Sources: Chris Doe, UO professor of biology, 541-346-4877, cdoe@uoregon.edu, and Dylan Farnsworth, doctoral student, Department of Biology, 541-954-5496, drf@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Media Contact

Jim Barlow
jebarlow@uoregon.edu
541-346-3481

 @UOregonNews

http://uonews.uoregon.edu 

Jim Barlow |

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>