Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find molecular shift that stops stem cells in Drosophila from making tumors

08.12.2015

These precisely timed changes in aging stem cells could provide a path to identifying some cancers and targeting therapies, say University of Oregon scientists

University of Oregon scientists studying neural stem cells in the fruit fly Drosophila have uncovered a molecular change experienced by stem cells as they age. During development of the central nervous system, a protein is expressed that blocks tumor formation.


With the enzyme Eyeless knocked out, cells over-proliferate (shown in green) in a fruit fly's larval brain during reactivated Notch signaling.

Credit: University of Oregon

The research, detailed in a paper placed online ahead of print in the journal Current Biology, focused on the larval stage of fruit fly development. This is when stem cells generate most of the neurons that form the adult's brain. While rapidly dividing to produce new cells, these stem cells rely on the signaling pathway of the Notch protein.

Previous research has shown that when Notch signaling runs smoothly, the stem cells make neurons that populate the adult central nervous system. With too much Notch, stem cells lose control and over-proliferate - forming large tumors. In humans, adult T-cell leukemia is tied to overactive Notch signaling.

"Stem cells have a really tough job, because they have to divide to make the millions of neurons in our brain," said co-author Chris Doe, a professor of biology and a Howard Hughes Medical Institute Investigator based at the UO. "If they don't divide enough, it results in microcephaly or other small brain diseases, but if they divide too much they make tumors. They have to stay right on that boundary of dividing to make neurons but not dividing excessively and forming a tumor. It's really walking a tightrope."

In the new research, UO doctoral student Dylan Farnsworth discovered that if he waited for stem cells to divide a few times and age a bit, they quit responding to Notch. At this point, stem cells cannot be pushed by high doses of Notch signaling to form tumors. He wondered why.

Further study led to the discovery of age-related molecular changes. Late in their lives, and at about the same time they resist tumor formation, stem cells begin expressing a transcription factor protein, known as Eyeless in Drosophila and Pax6 in humans. Its presence blocks Notch signaling, Farnsworth said.

When Eyeless is knocked out in these stem cells, the researchers showed, Notch signaling overwhelms the balance again and forms brain tumors.

"If we can identify the stem cells that are relied upon during development, maybe we could find a way to use them later to re-create conditions that might be therapeutic," Farnsworth said. "If you do it incorrectly, you risk over-proliferation and the development of masses -- and cancer."

Finding this role for Eyeless is a step in that direction, but it's possible that other molecules also are present and may also inhibit tumor growth, Doe said. "This paper shows that Eyeless is important for winding down the lifespan of the stem cells that are giving rise to the adult brain. It's a stop signal that says it is time to cease responding to Notch signals."

While the system used to probe these cells was created for basic science research in Doe's lab, it opens a new window to identify cells involved in the origin of cancers. In this case, tumors induced by Notch signaling in older stem cells were distinct from their earlier versions. Eventually, with more extensive research, the system could provide a roadmap to fine-tuning the timing of stem cell-based therapies to restart healthy activity in adult stem cells, Doe said.

###

Former UO doctoral student Omer Ali Bayraktar, now a postdoctoral fellow in the Department of Regenerative Medicine at the University of California, San Francisco, also was a co-author.

A grant from National Institutes of Health (T32 GM007413) to Farnsworth helped fund the research along with HHMI support to Doe.

Sources: Chris Doe, UO professor of biology, 541-346-4877, cdoe@uoregon.edu, and Dylan Farnsworth, doctoral student, Department of Biology, 541-954-5496, drf@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Media Contact

Jim Barlow
jebarlow@uoregon.edu
541-346-3481

 @UOregonNews

http://uonews.uoregon.edu 

Jim Barlow |

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>