Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Find Adult Brain Changes with Unsuspected Speed

The human brain can adapt to changing demands even in adulthood, but MIT neuroscientists have now found evidence of it changing with unsuspected speed. Their findings suggest that the brain has a network of silent connections that underlie its plasticity.

The brain’s tendency to call upon these connections could help explain the curious phenomenon of “referred sensations,” in which a person with an amputated arm “feels” sensations in the missing limb when he or she is touched on the face.

Scientists believe this happens because the part of the brain that normally receives input from the arm begins “referring” to signals coming from a nearby brain region that receives information from the face.

“We found these referred sensations in the visual cortex, too,” said senior author Nancy Kanwisher of the McGovern Institute for Brain Research at MIT, referring to the findings of a paper being published in the July 15 issue of the Journal of Neuroscience. “When we temporarily deprived part of the visual cortex from receiving input, subjects reported seeing squares distorted as rectangles. We were surprised to find these referred visual sensations happening as fast as we could measure, within two seconds.”

Many scientists think that this kind of reorganized response to sensory information reflects a rewiring in the brain, or a growth of new connections.

“But these distortions happened too quickly to result from structural changes in the cortex,” Kanwisher explained. “So we think the connections were already there but were silent, and that the brain is constantly recalibrating the connections through short-term plasticity mechanisms.”

First author Daniel Dilks, a postdoctoral researcher in Kanwisher’s lab, first found the square-to-rectangle distortion in a patient who suffered a stroke that deprived a portion of his visual cortex from receiving input. The stroke created a blind region in his field of vision. When a square object was placed outside this blind region, the patient perceived it as a rectangle stretching into the blind area — a result of the the deprived neurons now responding to a neighboring part of the visual field.

“But the patient’s cortex had been deprived of visual information for a long time, so we did not know how quickly the adult visual cortex could change following deprivation,” Dilks said. “To find out, we took advantage of the natural blind spot in each eye, using a simple perceptual test in healthy volunteers with normal vision.”

Blind spots occur because the retina has no photoreceptors where the optic nerve exits the eye, so the visual cortex receives no stimulation from that point. We do not perceive our blind spots because the left eye sees what is in the right eye’s blind area, and vice versa. Even when one eye is closed, we are not normally aware of a gap in our visual field.

It takes a perceptual test to reveal the blind spot, which involves covering one eye and moving an object towards the blind spot until it “disappears” from view.

[Click here to find your own blind spot:].

Dilks and colleagues used this test to see how soon after the cortex is deprived of information that volunteers begin to perceive shape distortions. They presented different-sized rectangles just outside the subjects’ blind spot and asked subjects to judge the height and width at different time points after one eye was patched.

The volunteers perceived the rectangles elongating just two seconds after their eye was covered — much quicker than expected. When the eye patch was removed, the distortions vanished just as fast as they had appeared.

“So the visual cortex changes its response almost immediately to sensory deprivation and to new input,” Kanwisher explained. “Our study shows the stunning ability of the brain to adapt to moment-to-moment changes in experience even in adulthood.”

Chris Baker (NIH) and Yicong Liu (MIT undergraduate student) contributed to this study, which was supported by the NIH and NIMH.

Publication quality images available upon request.

Written by Cathryn M. Delude, McGovern Institute / MIT News Office

Jen Hirsch | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>